Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Homoleptic *mer*-Ir(III) complexes for highly efficient solution-processable green phosphorescent organic light-emitting diodes with high current efficiency

Athithan Maheshwaran,^a Vijaya Gopalan Sree,^a Raja Kumaresan,^a Ho-Yeol Park,^a Jungmin Choi,^a

Kyungmin Sung,^a Jee Jesung*a and Sung-Ho Jin*a

A. Maheshwaran, Dr. V. G. Sree, R. Kumaresan, H-Y Park, J. Choi, K. Sung, Jee. J, Prof. S.-H. Jin

^aDepartment of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic

Information and Energy Materials, Pusan National University, Busandaehakro 63-2, Busan 46241,

Republic of Korea

E-mail: jjs@kpxls.com, shjin@pusan.ac.kr

General information

All reagents and solvent were purchased from Aldrich Chemical Co. and Alfa Aesar and, used without further purification. All reactions were carried out in an inert and dry environment under anhydrous nitrogen (N₂) which was dried by passing through a column of calcium sulfate.¹H and ¹³C NMR spectra were recorded on a Varian Mercury Plus 600 MHz spectrometer in CDCl₃ using tetramethylsilane as an internal reference. The chemical shifts were reported in ppm relative to the singlet of $CDCl_3$ at 7.26 and 77 ppm for the ¹H and ¹³C NMR, respectively. UV-visible and the emission spectra were recorded with a JASCO V-570 and Hitachi F-4500 fluorescence spectrophotometers at room temperature. The absolute PLQYs of the doped films were measured using spectroflurometer with an integrating sphere system (JASCO FP-8500) under an inert atmosphere. Thermal analysis was carried out on a Mettler Toledo TGA/SDTA 851e analyzer under N₂ atmosphere at a heating rate of 10 °C min⁻¹. CV studies were carried out with a CHI 600C potentiostat (CH Instruments) at a scan rate of 100 mV s⁻¹ in an anhydrous CH_2Cl_2 solvent with 0.1 M TBACIO₄ as supporting electrolyte. A platinum wire was used as the counter electrode and an Ag/AgCl electrode was used as the reference electrode. The potentials were referenced to the ferrocene/ferrocenium redox couple (Fc/Fc^+). The purity of the Ir(III) complexes were determined by high-performance liquid chromatography (HPLC) carried out using from Agilent instruments.

Fig. S1 a) ¹H NMR spectrum of *mer*-Ir1 b) Aromatic region c) Mass spectrum of *mer*-Ir1.

Fig. S2 a) ¹H NMR spectrum of *mer*-Ir2 b) Aromatic region and c) Mass spectrum of *mer*-Ir2.

이층	대무용 시간 (분)	면적 (uV+杰)	% 면적	备01 (UV)	적분 타입	ų	원위	미크 타입	26 E B
	1,790	12614	0,10	1518	88			מוגו	
	2,919	3486	0,03	332	₽₽			미지	
	10,993	12990789	99,88	830062	88			מוגו	

L	 (モ)	(07*2)		(0))		-	 	
I	1,745	10227	0,05	1294	88		미지	
Γ	3,586	5011	0,02	1368	BV		미지	
Γ	3,773	9872	0,05	1475	VB		미지	
T	21,506	21478864	99,88	706163	BB		미지	

Fig	62		cnostro	of	aamnaund	man In1	and	man Ing
rig.	33	HPLC	spectra	01	compound	mer-Ir1	and	<i>mer</i> -1r2.

Fig. S4. Transient PL curves of *mer*-Ir1 and *mer*-Ir2.

Fig. S5. TGA curves of *mer*-Ir1 and *mer*-Ir2.

Fig. S6. DSC curves of *mer*-Ir1 and *mer*-Ir2.

Fig. S7. Cyclovoltammetry curves of *mer*-Ir1 and *mer*-Ir2.

Fig. S8. Surface morphologies of solution processed films.

Fig. S9. EQE measured for different doping concentrations of *mer*-Ir2 complex.

Green Phosphors	EQE _{max} (%)	CE _{max} (cd/A)	Reference
<i>mer</i> -Ir2	20.03	67.81	This work
fac-G0	18.1	62	[1]
<i>fac</i> -Ir(mppy) ₃	16.3	56.9	[2]
fac-1c	12	40	[3]
<i>fac</i> -Ir(ppy) ₃	15	56.8	[4]
<i>fac</i> -Ir(ppy) ₃	-	27.4	[5]
<i>fac</i> -Ir(ppy) ₃	-	27.3	[6]
<i>fac</i> -Ir(mppy) ₃	22	69	[7]
fac-3c	12.9	37.6	[8]
fac-G1	15	51.8	[9]
fac- Ir-3Tz1F	15.8	56.2	[10]
<i>fac</i> -Ir(ppy) ₃	-	42	[11]
<i>fac</i> -Ir(ppy-Cz) ₃	7.8	23.0	[12]
<i>fac</i> -Ir(ppy) ₃	11.4	38.71	[13]

Table S1. Literature summary of homoleptic green PHOLEDs via solution-processed.

References

- 1. S. Wang, X. Wang, B. Yao, B. Zhang, J. Ding, Z. Xie, L. Wang, Sci. Rep., 2015, 5, 12487.
- 2. J. Chen, C. Shi, Q. Fu, F. Zhao, Y. Hu, Y. Feng, D. Ma, J. Mater. Chem., 2012, 22, 5164.
- 3. M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. A.-Attar, A. P. Monkman, *J. Mater. Chem.*, 2012, **22**, 6419.
- 4. M. Zhu, T. Ye, X. He, X. Cao, C. Zhong, D. Ma, J. Qin, C. Yang, J. Mater. Chem., 2011, 21, 9326.
- 5. Z. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita, M.-A. Kakimoto, *Chem. Mater.*, 2008, **20**, 2532.
- 6. Z. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita, M.-A. Kakimoto, *Adv. Funct. Mater.*, 2008, **18**, 584.
- 7. M. Cai, T. Xiao, E. Hellerich, Y. Chen, R. Shinar, J. Shinar, Adv. Mater., 2011, 23, 3590.
- 8. Y. Kim, S. Park, Y. H. Lee, J. Jung, S. Yoo, M. H. Lee, Inorg. Chem., 2016, 55, 909.
- J. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing, F. Wang, *Adv. Funct. Mater.*, 2006, 16
 575.
- 10. H. Guo, J. Zhao, Z. Tian, Y. Wu, B. Liu, F. Dang, X. Yang, G. Zhou, Z. Wu, W.-Y. Wong, *J. Mater. Chem. C*, 2017, **5**, 208.
- 11. C.-C. Lee, C.-H. Yuan, S.-W. Liu, L.-A. Liu, Y.-S. Chen, J. Disp. Technol., 2011, 7, 636.
- 12. M. J. Cho, J.-I. Jin, D. H. Choi, Y. M. Kim, Y. W. Park, B.-K. Ju, Dyes Pigm., 2009, 83, 218.
- 13. J. Li, T. Zhang, Y. Liang, R. Yang, Adv. Funct. Mater., 2013, 23, 619.