Supporting Information

Customizing Coaxial Stacking VS2 Nanosheets for Dual Band Microwave Absorption with Superior Absorption Performance at

C- and K_u-Bands

Deqing Zhang,^{‡ a,c} Huibin Zhang,^{‡ a} Junye Cheng,^{‡ b} Hassan Raza,^b Tingting Liu,^a Xuewei Ba,^a Guangping Zheng,^{*,b} Guohua Chen,^{*,b}

and Maosheng Cao*,c

^aSchool of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China

^bDepartment of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

°School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

‡These authors contribute equally to this work.

*E-mail: mmzheng@polyu.edu.hk;guohua.chen@polyu.edu.hk; caomaosheng@bit.edu.cn

Figure S1. SEM images of samples S-170 (a) and S-200 (b).

Figure S2. TEM images of samples S-170 (a) and S-200 (b).

Figure S3. AFM images of typical samples (a) S-170 and (b) S-200.

Figure S4. Elemental mapping images (a, b, c) and EDS spectra(d) of typical sample S-190.

Figure S5. RL¹ map (Top picture) in combination with the plots of imaginary part of permittivity (Bottom picture) for samples (a) S-170; (b) S-180; (c) S-190 and (d) S-200.

Figure S6. The calculated $|\Delta|$ value maps for VS₂ samples. (a) S-170; (b) S-180; (c) S-190; (d) S-200; (e) the conductivity and attenuation constants (f) of samples.

Filler	loading ratio (wt %)	RL (dB)	Thickness (mm)	Frequency (GHz)	Maximal RL (dB)	Frequency of Maximal RL (GHz)	Thickness of Maximal RL (mm)	Ref
WS ₂ +RGO	40	-27	5.5	10.5	-41.5	10.5	2.5	[S1]
Flower-like MoSe ₂	50	-19	7.8	3.2	-51.6	6.1	4.45	[S2]
MoS ₂ nanosheets	60	-45	2.3	12.1	-47.8	12.9	2.2	[S3]
$3D MoS_2$	25	-26.11	2.5	11.36				[S4]
2D few layers WS_2	30	-37	6.0	4.3	-63	12.1	2.5	[S5]
Pure WS ₂	35	-26	2.5	11.2	-47.1	12.9	2.2	[S6]
MoS ₂ -graphene	10	-8	7.0	9.5	-24.2	13.3	5.5	[S7]
2D MoS ₂ -graphene	30		5.4	16.1	-41.9	16.2	2.4	[S8]
MoS ₂ -RGO	10	-27	4	6.5	-50.9	11.6	2.3	[S9]
MoS ₂ + RGO	60	-30	2.6	10	-38.42	11.17	2.4	[S10]
MoS ₂ + RGO	20	-32	3.5	6.8	-55.3	12.8	1.5	[S11]
MoS ₂ + MWCNTs	30	-16	5.0	5.9	-14	15	2.0	[S12]
MoS ₂ +PANI	40	-18	2.0	5.8	-40.79	14.01	4.5	[S13]
Graphene Aerogel	30				-61.09	9.9	4.81	[S14]
Carbon hollow spheres	20	-43	4.0	8.9	-50.9	11.1	3.2	[815]
Carbon hollow microsphere	20	-22	5.0	6.0	-39.4	8.2	3.6	[S16]
3D carbon foams	30	-17	5.0	5.5	-52.6	15.8	2.6	[S17]

Table S1. Microwave absorbing performance of some previous materials.

Table S2. The band gaps of the monolayer and bulk transition metal dichalcogenide.

Material	Monolayer	Bulk	Ref
VS_2	0.6 eV		[S18]
WS_2	1.3 eV	2.1 eV	[S19]
MoS_2	1.2 eV	1.9 eV	[S19]
MoSe ₂	1.09 eV	1.44 eV	[S20]
WSe ₂	1.13 eV	1.56 eV	[S20]
MoTe ₂		0.57eV	[S21]

References

- [S1] D. Q. Zhang, T. T. Liu, J. Y. Cheng, Q. Cao, G. P. Zheng, S. Liang, H. Wang, M. S. Cao, Nano-micro Letters, 2019, 11, 38.
- [S2] Y. Cheng, Y. Zhao, H. Q. Zhao, H. L. Lv, X. D. Qi, J. M. Cao, G. B. Ji, Y. W. Du, Chem. Eng. J., 2019, 372, 390-398.
- [S3] X. H. Liang, X. M. Zhang, W. Liu, D. M. Tang, B. S. Zhang, G. B. Ji, J. Mater. Chem. C, 2016, 4, 6816-6821.
- [S4] X. J. Zhang, S. Li, S. W. Wang, Z. J. Yin, J. Q. Zhu, A. P. Guo, G. S. Wang, P. G. Yin, L. Guo, J. Phys. Chem. C, 2016, 120, 22019-22027.
- [S5] F. Wu, Y. L. Xia, M. X. Sun, A. M. Xie, Appl. Phys. Lett., 2018, 113, 052906.
- [S6] W. Ding, L. Hu, Q. C. Liu, Z. G. Sheng, J. M. Dai, X. B. Zhu, Y. P. Sun, Appl. Phys. Lett., 2018, 113, 243102.
- [S7] L. Z. Bai, Y. H. Wang, F. Li, D. An, Z. Y. Zhang, Y. Q. Liu, J. Sol-Gel Sci. Techn., 2017, 84, 104-109.
- [S8] X. Wang, W. L. Zhang, X. Q. Jia. B. Q. Zhang, M. X. Yu, W. Zhang, J. Q. Liu, RSC Adv., 2016, 6, 106187-106193.
- [S9] Y. F. Wang, D. L. Chen, X. Yin, P. Xu, F. Wu, M. He, ACS Appl. Mater. Inter., 2015, 7, 26226-26234.
- [S10] M. Q. Ning, B. Y. Kuang, Z. L. Hou, L. Wang, J. B. Li, Y. J. Zhao, H. B. Jin, Nanoscale, 2018, 7, 15734-15740.
- [S11] D. Q. Zhang, Y. X. Jia, J. Y. Cheng, S. M. Chen, J. X. Chai, X. Y. Yang, Z. Y. Wu, H. Wang, W. J. Zhang, Z. L. Zhao, C. Han, M. S. Cao, G. P. Zheng, *J. Alloy. Compd.*, **2018**, 758, 62-71.
- [S12] L. L. Liu, S. Zhang, F. Yan, C. Y. Li, C. L. Zhu, X. T. Zhang, Y. J. Chen, ACS Appl. Mater. Inter., 2018, 10, 14108-14115.
- [S13] J. L. Yang, M. Q. Ye, A. J. Han, Y. Zhang, K. Zhang, J. Mater. Sci-Mater. El., 2018, 30, 292-301.
- [S14] Z. C. Wang, R. B. Wei, J. W. Gu, H. Liu, C. T. Liu, C. J. Luo, J. Kong, Q. Shao, N. Wang, Z. H. Guo, X. B. Liu, Carbon, 2018, 139, 1126-1135.
- [S15] Y. Cheng, Z. Y. Li, Y. Li, S. S. Dai, G. B. Ji, H. Q. Zhao, J. M. Cao, Y. W. Du, Carbon, 2018, 127, 643-652.
- [S16] H. X. Zhang, B. B. Wang, A. L. Feng, N. Zhang, Z. R. Jia, Z. Y. Huang, X. H. Liu, G. L. Wu, Compos. Part B, 2019, 167, 690-699.
- [S17] X. F. Zhou, Z. R. Jia, A. L. Feng, X. X. Wang, J. X. Liu, M. Zhang, H. J. Cao, G. L. Wu, Carbon, 2019, 152, 827-836.
- [S18] Z. Y. Ding, J. H. Peng, X. Xie, J. W. Hu, H. Q. Yang, F. G. Wu, H. F. Dong, Solid State Commun., 2017, 266, 26.
- [S19] M. S. Cao, J. C. Shu, X. X. Wang, X. Wang, M. Zhang, H. J. Yang, X. Y. Fang, J. Yuan, Ann. Phys-Berlin., 2019, 531, 1800390.
- [S20] Y. Zhang, F. L. Tang, H. T. Xue, W. J. Lu, J. F. Liu, M. Huang, Physica E., 2015, 66, 342.
- [S21] A. Bera, A. Singh, D. V. S. Muthu, U. V. Waghmare, A. K. Sood, J. Phys-Condens. Mat., 2017, 29,10.