Supporting Information (SI)

Four-membered red iridium(III) complexes with Ir-S-C-S structures

for efficient organic light-emitting diodes

Ning Su, a,b Fang-Ling Li, You-Xuan Zhenga*

a State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic

Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R.

China.

E-mail: yxzheng@nju.edu.cn

b College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

E-mail: suning@szu.edu.cn

Materials and Measurements.

All reagents and chemicals were purchased from commercial sources and used without further

purification. ¹H NMR and ¹⁹F NMR were measured on a Bruker AM 400 spectrometer. High-

resolution electrospray mass spectra (HRMS) was measured on G6500 from Agilent for

complexes. TGA measurements were carried out on a DSC 823e analyzer (METTLER).

Absorption and photoluminescence spectra were measured on a UV-3100 spectrophotometer

and a Hitachi F-4600 photoluminescence spectrophotometer, respectively. The decay lifetimes

were measured with an Edinburgh Instruments FLS-980 fluorescence spectrometer in degassed

CH₂Cl₂ solution at room temperature. The luminescence quantum efficiencies were calculated

by comparison of the emission intensities (integrated areas) of a standard sample (fac-Ir(ppy)₃)

and the unknown sample.

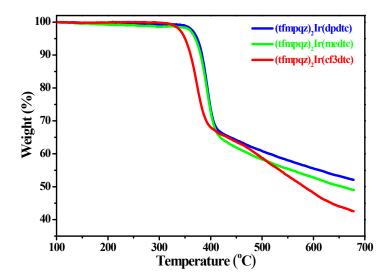
X-ray Crystallography.

The single crystals of complexes were carried out on a Bruker SMART CCD diffractometer

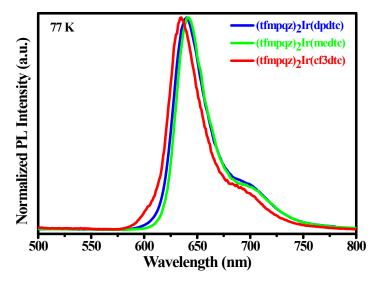
using monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature. Cell parameters

were retrieved using SMART software and refined using SAINT 1 on all observed reflections.

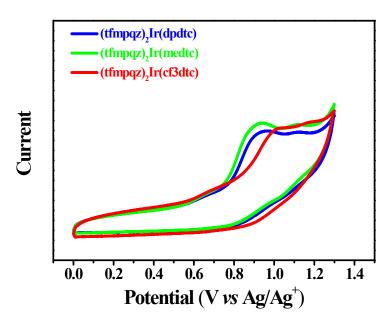
1


Data were collected using a narrow-frame method with scan widths of 0.30° in ω and an exposure time of 10 s/frame. The highly redundant data sets were reduced using SAINT and corrected for Lorentz and polarization effects. Absorption corrections were applied using SADABS 2 supplied by Bruker. The structures were solved by direct methods and refined by full-matrix least-squares on $F2.^3$ The positions of metal atoms and their first coordination spheres were located from direct-methods E-maps; other non-hydrogen atoms were found in alternating difference Fourier syntheses and least-squares refinement cycles and, during the final cycles, refined anisotropically. Hydrogen atoms were placed in calculated position and refined as riding atoms with a uniform value of Uiso.

Details of cyclic voltammetry measurements.


Cyclic voltammetry measurements were conducted on a MPI-A multifunctional electrochemical and chemiluminescent system (Xi'an Remex Analytical Instrument Ltd. Co., China) at room temperature, with a polished Pt plate as the working electrode, platinum thread as the counter electrode and Ag-AgNO₃ (0.1 M) in CH_2Cl_2 as the reference electrode, *tetra*-n-butylammonium perchlorate (0.1 M) was used as the supporting electrolyte, using Fc⁺/Fc as the internal standard, the scan rate was 0.1 V s⁻¹.

OLEDs fabrication and measurement.


All OLEDs were fabricated on the pre-patterned ITO-coated glass substrate with a sheet resistance of 15 Ω sq⁻¹. The deposition rate for organic compounds is 1-2 Å s⁻¹. The phosphor and the host (TCTA/2,6DCzPPy) was co-evaporated to form emitting layer from two separate sources. The cathode consisting of LiF/ Al was deposited by evaporation of LiF with a deposition rate of 0.1 Å s⁻¹ and then by evaporation of Al metal with a rate of 3 Å s⁻¹. The characteristic curves of the devices were measured with a computer which controlled KEITHLEY 2400 source meter with a calibrated silicon diode in air without device encapsulation. On the basis of the uncorrected PL and EL spectra, the Commission Internationale de l'Eclairage (CIE) coordinates were calculated using a test program of the Spectra scan PR650 spectrophotometer.

 $\textbf{Fig. S1} \ TGA \ curves \ of \ (tfmpqz)_2 Ir(dpdtc), \ (tfmpqz)_2 Ir(medtc) \ and \ (tfmpqz)_2 Ir(cf3dtc) \ complexes.$

Fig. S2 The 77 K phosphorescent spectra of $(tfmpqz)_2Ir(dpdtc)$, $(tfmpqz)_2Ir(medtc)$ and $(tfmpqz)_2Ir(cf3dtc)$ complexes.

 $\textbf{Fig. S3} \ \ CV \ \ curves \ \ of \ (tfmpqz)_2 Ir(dpdtc), \ (tfmpqz)_2 Ir(medtc) \ \ and \ \ (tfmpqz)_2 Ir(cf3dtc) \ \ complexes.$

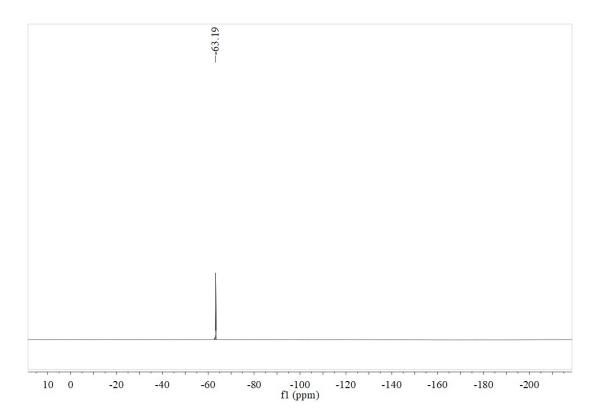



Fig. S4 ¹H NMR spectrum of (tfmpqz)₂Ir(dpdtc) complex.

 $\textbf{Fig. S5}~^{19}F~NMR~spectrum~of~(tfmpqz)_2Ir(dpdtc)~complex.$

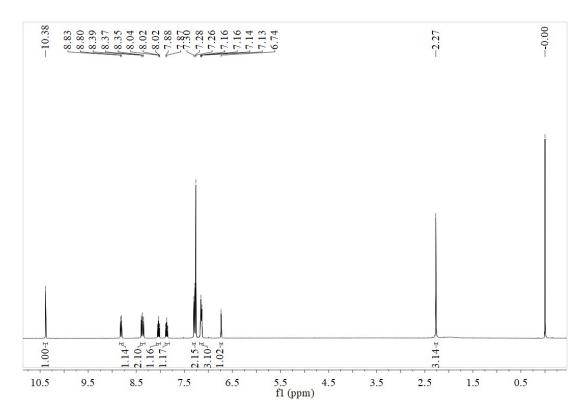


Fig. S6 ¹H NMR spectrum of (tfmpqz)₂Ir(medtc) complex.

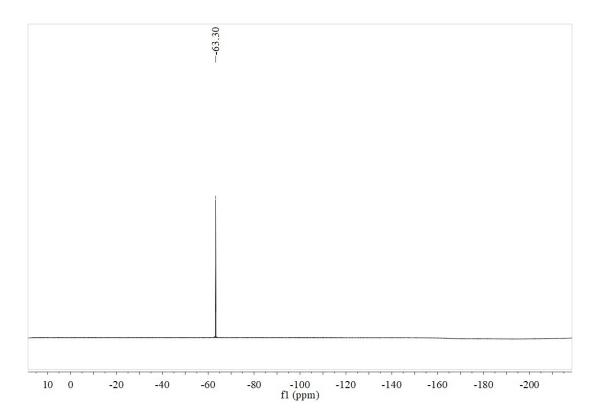
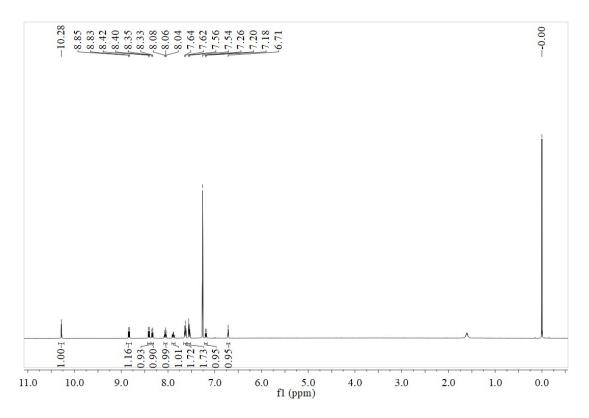
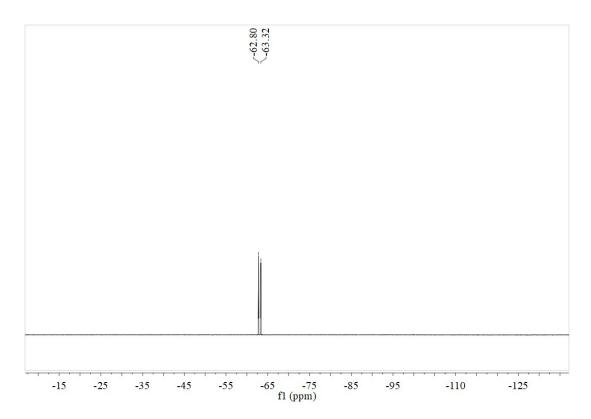




Fig. S7 $^{19}\mathrm{F}$ NMR spectrum of (tfmpqz)_2Ir(medtc) complex.

Fig. S8 ¹H NMR spectrum of (tfmpqz)₂Ir(cf3dtc) complex.

Fig. S9 ¹⁹F NMR spectrum of (tfmpqz)₂Ir(cf3dtc) complex.

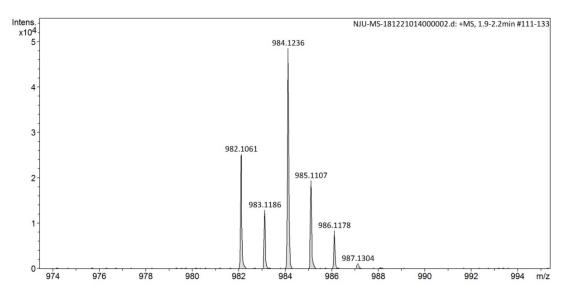
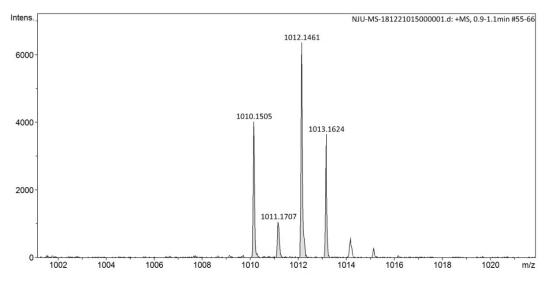



Fig. S10 HRMS spectrum of $(tfmpqz)_2Ir(dpdtc)$ complex.

 $\textbf{Fig. S11} \ HRMS \ spectrum \ of \ (tfmpqz)_2 Ir (medtc) \ complex.$

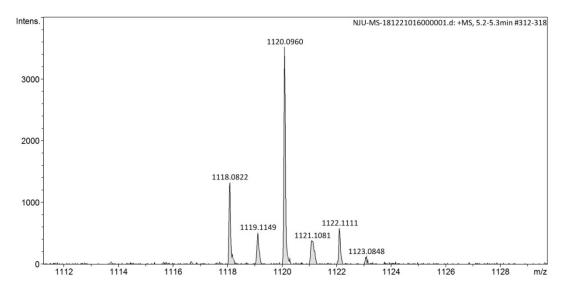


Fig. S12 HRMS spectrum of (tfmpqz)₂Ir(cf3dtc) complex.

Table S1. Crystal information of $(tfmpqz)_2Ir(dpdtc)$, $(tfmpqz)_2Ir(medtc)$ and $(tfmpqz)_2Ir(cf3dtc)$ complexes.

	$(tfmpqz)_2Ir(dpdtc)$	$(tfmpqz)_2Ir(medtc)$	$(tfmpqz)_2Ir(cf3dtc)$
Formula	$C_{43}H_{26}F_{6}IrN_{5}S_{2}$	$C_{45}H_{30}F_6IrN_5S_2$	$C_{45}H_{24}F_{12}IrN_5S_2$
Formula weight	983.01	1011.06	1119.01
T (K)	173 (2)	173 (2)	296 (2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	C2/c	$P2_1/c$
a (Å)	12.3627 (6)	10.442 (11)	10.4204 (6)
b (Å)	16.1241 (7)	23.68 (3)	26.2335 (16)

c (Å)	19.8219 (8)	15.834 (16)	16.5370 (10)
α (deg)	90.00	90.00	90.00
β (deg)	103.0820 (10)	106.52 (2)	107.1480 (10)
γ (deg)	90.00	90.00	90.00
$V(Å^3)$	3848.7 (3)	3754 (7)	4319.7 (4)
Z	4	4	4
$ \rho_{\rm calcd} ({\rm g/cm^3}) $	1.696	1.789	1.721
μ (Mo K α) (mm ⁻¹)	3.646	3.741	3.279
F(000)	1928	1992	2184
Range of transm factors	2.111 - 25.009	2.264 - 25.010	1.054 - 25.009
Reflns collected	27640	4585	24278
Unique(R _{int})	6786 (0.0428)	3294 (0.0350)	7619 (0.0453)
R_1^a , wR_2^b [I > 2s(I)]	0.0255, 0.0517	0.0570, 0.1400	0.0406, 0.0816
R_1^a , wR_2^b (all data)	0.0389, 0.0557	0.0693, 0.1497	0.0655, 0.0903
GOF on F^2	1.043	1.107	1.042
CCDC No.	1891565	1885951	1885886

 $R_1^a = \Sigma ||F_0| - |F_c||/\Sigma F_0|$. $wR_2^b = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)]^{1/2}$

Table S2. Selected bond lengths and angles of $(tfmpqz)_2Ir(dpdtc)$, $(tfmpqz)_2Ir(medtc)$ and $(tfmpqz)_2Ir(cf3dtc)$ complexes.

(tfmpqz) ₂	(tfmpqz) ₂ Ir(dpdtc)		$(tfmpqz)_2Ir(medtc)$		$(tfmpqz)_2Ir(cf3dtc)$	
Selected bonds						
C20-Ir1	2.002 (4)	C1-Ir1	1.955 (8)	Ir1-C45	2.003 (6)	
C43-Ir1	2.005 (3)	N1-Ir1	2.005 (7)	Ir1-C44	2.016 (5)	
Ir1-N2	2.033 (3)	N1 ⁱ -Ir1	2.004 (7)	Ir1-N2	2.031 (5)	
Ir1-N3	2.032 (3)	Ir1-S1	2.412 (3)	Ir1-N5	2.057 (4)	
Ir1-S1	2.468 (8)	Ir1-S1i	2.412 (3)	Ir1-S1	2.4503 (16)	
Ir1-S2	2.470 (9)	S1-C16	1.669 (7)	Ir1-S2	2.4801 (18)	
C36-S1	1.703 (4)	S1 ⁱ -C16	1.669 (7)	C28-N7	1.359 (8)	
C36-S2	1.719 (3)	C16-N3	1.312 (16)	C28-S1	1.705 (6)	
C36-N5	1.342 (4)	C1-Ir1-N1	77.5 (3)	C28-S2	1.701 (6)	
Selected angles						
C20-Ir1-N3	78.95 (14)	S1-Ir1-S1 ⁱ	71.14 (13)	C44-Ir1-N2	78.7 (2)	
C43-Ir1-N2	78.30 (12)	S1-C16-S1 ⁱ	114.4 (7)	C45-Ir1-N5	79.3 (2)	

S1-Ir1-S2 71.50 (3) C1-Ir1-C1ⁱ 94.5 (5) S1-Ir1-S2 71.60 (6)

Table S3. HOMO and LUMO electron cloud density distributions of each fragment of three Ir(III) complexes.

Complex	O-1-i4	Composition(%)			
	Orbit —	tfmpqz	Ir atom	ancillary ligand	
(tfmpqz) ₂ Ir(dpdtc)	НОМО	43.55	47.66	8.79	
	LUMO	93.51	4.08	2.41	
$(tfmpqz)_2Ir(medtc)$	НОМО	41.80	48.78	9.43	
	LUMO	94.29	3.53	2.17	
(tfmpqz) ₂ Ir(cf3dtc)	НОМО	40.77	48.54	10.69	
	LUMO	91.33	3.60	5.06	