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1. The model description of a polymer in the framework of a tight-binding SSH 

model 

For the polymer, we give it a model description referring to cis-polyacetylene, 

consisting of weakly interacted linear chains of CH units. Along a single cis-

polyacetylene chain, each carbon atom has three 2sp2 hybrid orbitals in a plane and one 

2pz orbital orthogonal to this plane. The 2sp2 orbitals give rise to three σ-bonds, two of 

which are formed with neighboring carbons and one with a hydrogen. The electron in 

the 2pz orbital of one carbon atom will be paired with the electron in the neighboring 

carbon’s 2pz orbital, such that it can be delocalized along the chain, denoted as π -

electron. According to the Peierls instability, the one dimensional (1D) chain will be 

dimerized and form a single-double bond alternation lattice structure. 

 Here, such a polymer chain can be described by an extended version of the 1D 

tight-binding Su-Schrieffer-Heeger (SSH) model,1-3 where each CH unit is regarded as 

a site. The Hamiltonian consists of three parts 
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The first one shows the electronic part, which describes the hopping of π -electrons 

between the neighboring sites along the polymer chain. , 1n nt +   shows the transfer 

integral of a π -electron between sites n and n+1, written as 

, 1 0 1( ) ( 1)n
n n n n et t u u tα+ += − − − −                                            (2) 

It should be stressed that , 1n nt +  is tightly related to the site displacement un, and the 

correlation extent is determined by the electron-lattice (e-l) interaction constant α. For 

an organic polymer, the value of α is much larger than the silicon-based inorganic 
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materials. Therefore, once the electronic states are changed, such as through 

photoexcitation, the lattice structure will undergo a distortion, which, vice versa, results 

in a reconstruction of the electronic states (i.e., self-trapping effect).3 t0 represents the 

transfer integral between neighboring sites for a uniform lattice structure, and te the 

symmetry-breaking parameter introduced to describe a system with a non-degenerate 

ground state. 

The second and the third terms in eqn (1) show the lattice part of the polymer, 

which separately describes the elastic potential energy and the kinetic energy of the 

lattice. K represents the elastic constant between neighboring sites, and M the mass of 

a site. 

Values of the model parameters are separately set as t0=2.5 eV, α=41 eV nm-1, 

K=2100 eV nm-2, M=1.35×105 eV fs2 nm-2, and te=0.05 eV. 

 

2. Realization of the initial state (exciton or biexciton) 

Here, let us clarify how we get the initial state of exciton/biexciton before the 

dynamical simulations. For the modeled polymer chain consisting of N=200 sites, its 

ground state can be obtained with 200 π -electrons occupying the 100 levels of the 

valence band. Moving an electron (or two electrons) from the highest occupied 

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), an 

exciton (or biexciton) can be created in the polymer by iteratively solving the static 

electronic eigenequation (eqn (3)) and the lattice balance equation (eqn (4)) 

, 1 1,( 1) ( 1) ( )n n n nt n t n nµ µ µ µϕ ϕ ε ϕ+ −− + − − =                                   (3) 
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µε  is the eigenenergy of an eigenstate ( )nµϕ . The lattice balance equation is obtained 

by minimizing the total energy E of the system (i.e., / 0nE u∂ ∂ = ), in which we employ 

a fixed boundary condition. The total energy E is written as 
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Here, “occ” indicates the sum only for the occupied electronic states. 

 

3. The quantum nonadiabatic evolution method 

In dynamical simulations, we assume that an exciton or biexciton has already 

formed in the polymer chain. Once the nonuniform electric field //
nE  is turned on, the 

initially formed exciton/biexciton will experience dynamical evolutions. By employing 

a nonadiabatic evolution method, we can separately obtain the temporal evolution of 

the lattice displacement ( )nu t  (i.e., nuclear motion) and the electronic state ( )tµψ . 

Here, the nuclear motion is classically described by the Newtonian equation of motion 
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                        (6) 

The density matrix , ( 1)n n n nρ ′ ′ = ±  is defined as 

*
, ( ) ( , ) ( , )n n t n t f n tµ µ µ

µ

ρ ψ ψ′ ′= ∑                                             (7) 

( , ) ( )n t n tµ µψ ψ=  is the projection of electronic state ( )tµψ  on the Wannier state 

of site n. µf (= 0, 1, 2) is a time-independent distribution function and determined by 

the initial occupation of the electronic state ( )tµψ . Evolution of ( , )n tµψ  follows the 

time-dependent Schrödinger equation 
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The coupled differential eqn (6) and (8) are numerically solved by the Runge-

Kutta method of order eight with step-size control,4 which has been widely used and 

proven to be an effective approach in the dynamical investigations of polymers.5-8 

 

4. Comparison, definition, and the detailed calculation method for the 

exciton/biexciton binding energies 

Quantitatively, we can introduce the binding energy to describe the binding extent 

between the excited electron and hole in an exciton ( ex
BE ) or a biexciton ( biex

BE ), the 

values of which are separately calculated to be ex
B 0.26 eVE =  and biex

B 0.89 eVE = for 

the present values of parameters. Compared with the exciton, the larger binding energy 

of the biexciton should be attributed to the stronger local lattice potential. This result 

can be reflected by the deeper lattice distortion (see Fig. S1) and gap energy levels (see 

Fig. S2) of a biexciton than those of an exciton. The definition and the detailed 

calculation method for the exciton/biexciton binding energies are as follows. 

For an exciton in the polymer, the binding energy is defined as the energy 

difference of the system after and before its dissociation.9 Different from the 

conventional inorganic system, the generated electron and hole after the exciton 

dissociation will also behave in spatially localized forms, 10, 11 known as the negative 

polaron ( P− ) and positive polaron ( P+ ), respectively (see Fig. S3a). So, the exciton 

binding energy can be obtained by calculating + -
ex
B exP +P

E E E= − , where + -P +P
E  is the 
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system energy with free negative and positive polarons existed, and exE  the system 

energy with an exciton generated. 

Similarly, for a biexciton in the polymer, the binding energy is defined as the 

energy difference of the system after and before its dissociation. However, the 

difference is that, after the biexciton dissociation, a negative bipolaron ( 2BP − ) and a 

positive bipolaron ( 2BP +  ) are generated (see Fig. S3b).12, 13 Correspondingly, the 

biexciton binding energy is obtained by 2+ 2-
biex
B biexBP +BP

E E E= − , where 2+ 2-BP +BP
E  is 

the system energy with free negative and positive bipolarons existed, and biexE  the 

system energy with a biexciton generated. 

 

5. Model description for two parallelly aligned polymer chains 

For the interaction between two interacted polymer chains with a parallel 

alignment, we can employ the following description 

1, 2, 2, 1,( )n n n n
n

H t C C C C+ +
⊥ ⊥= − +∑                                      (9) 

t⊥  stands for the interchain transfer integral of a π -electron between the nearest sites 

of the two chains. 

 

6. Supplementary Figures 
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Fig. S1 Lattice structure ( 1( 1) ( )n
n n ny u u+= − − ) of a polymer chain, which separately 

lies in an exciton state (a) and a biexciton state (b). 

 

 

Fig. S2 Energy level structure of a polymer chain, which separately lies in an exciton 

state (a) and a biexciton state (b). 
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Fig. S3 The net charge distribution ( ,( 1)n n nq e ρ= − ) of an exciton (a) and a biexciton 

(b) before and after dissociations. 

 

 

Fig. S4 Initial evolutions ( 50t ≤  fs) of the net charge distribution ( )nq t (unit: e) during 

the exciton (a) and biexciton (b) dynamics. 

 

 

Fig. S5 Dependence of the exciton binding energy ex
BE   upon the electron-lattice 

interactions α in the polymer chain. 
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