Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Non-halogenated solvent-processed highly efficient green Ir(III) complexes with external quantum efficiency exceeding 23% for phosphorescent organic light-emitting diodes

Raja Kumaresan,^a Athithan Maheshwaran,^a Ho-Yeol Park,^a Kyungmin Sung,^a Jungmin Choi,^a Woosum Cho,^a Myungkwan Song,^{*b} Sung Il Ahn^{*a} and Sung-Ho Jin^{*a}

R. Kumaresan, A. Maheshwaran, H.-Y. Park, Dr. W. Cho, Prof. S. I. Ahn, Prof. S.-H. Jin ^aDepartment of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea E-mail: shjin@pusan.ac.kr, sungilahn@pusan.ac.kr

Dr. M. Song

^bAdvanced Functional Thin Films Department Surface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon, Gyeongnam 51508, Republic of Korea

E-mail: smk1017@kims.re.kr

General information

¹H NMR spectra were recorded on a Varian Mercury Plus 400 MHz spectrometer in CDCl₃ using tetramethylsilane as an internal reference. The chemical shifts were reported in ppm relative to the singlet of DMSO-d₆ at 2.50 for the ¹H NMR. UV-visible and the emission spectra were recorded with a JASCO V-570 and Hitachi F-4500 fluorescence spectrophotometers at room temperature. Transient PL measurements were carried out using compact fluorescence lifetime spectrometer C11367 at room temperature. The absolute PLQYs of the doped films were measured using spectroflurometer with an integrating sphere system (JASCO FP-8500) under an inert atmosphere. Thermal analyses were carried out on a Mettler Toledo TGA/SDTA 851e analyzer under N₂ atmosphere at a heating rate of 10 °C min⁻¹. Cyclic voltammetry (CV) studies were carried out with a CHI 600C potentiostat (CH Instruments) at a scan rate of 50 mV s⁻¹ in anhydrous dichloromethane (CH₂Cl₂) solvent with 0.1 M TBAClO₄ as supporting electrolyte. A platinum wire was used as the counter electrode and an Ag/AgCl electrode was used as the reference electrode. The potentials were referenced to the ferrocene/ferrocenium redox couple (Fc/Fc⁺).

Scheme S1. Synthetic routes of main ligands.

Synthetic procedures for main ligands

Synthesis of 2-chloro-N-(2-ethylhexyl)pyridin-3-amine (1). A solution of 3-amino-2chloropyridine (10 g, 77.78 mmol) in anhydrous tetrahydrofuran (THF) (100 mL) was added to a suspension of sodium hydride (NaH) (3.1 g, 77.78 mmol, 60% dispersion in oil) and THF (50 mL) under N₂ atmosphere. The reaction mixture was stirred at room temperature (RT) for 3 h. Afterwards, 2-ethylhexyl bromide (11.66 mL, 77.78 mmol) was added and the reaction mixture was heated to 40 °C for 9 h. After cooling to RT, the solvent was removed and the crude material dissolved in DCM and filtered to remove any salt. The filtrate was purified by column chromatography on silica gel using ethyl acetate (EtOAc):n-hexane (10:90% v/v) as an eluent to afford compound **1** as a pale yellow liquid (8.5 g, yield: 85%). ¹H NMR (300 MHz, CDCl₃, δ): 7.64-7.63 (d, 1H), 7.06-7.02 (m, 1H), 6.84-6.81 (d, 1H), 4.33 (s, 1H), 3.01 (t, 2H), 1.57-1.55 (d, 1H), 1.41-1.28 (m, 8H), 0.87 (m, 6H).

Synthesis of N-(2-chloropyridin-3-yl)-N-(2-ethylhexyl)-3-(trifluoromethyl)benzamide (2). NaH (1.39 g, 58.14 mmol) was added to anhydrous THF (30 mL) and the mixture was cooled to 0 °C under N₂ atmosphere. Compound (1) (5 g, 29.07mmol) was added to the reaction mixture and stirred for 1 h. After that, 3-(trifluromethyl)benzoyl chloride (9.09 g, 43.61mmol) was added and stirred for 8 h at RT. After completion of the reaction, the reaction mixture was quenched by the addition of ice cold water (50 mL). Finally, the organic layer was extracted with DCM, washed with brine solution and dried over anhydrous Na₂SO₄. The solvent was evaporated off, and the solid residue was purified by column chromatography on silica gel using EtOAc:n-hexane (10:90% v/v) as an eluent to afford **2** as a colorless liquid (3.5 g, yield: 70%). ¹H NMR (300 MHz, CDCl₃, δ): 8.25 (s, 1H), 7.45-7.56 (d, 4H), 7.32 (d, 1H), 7.18 (s, 1H), 7.18 (s, 1H), 4.15 (s, 1H), 3.25-3.23 (t, 1H), 1.32-1.22 (d, 8H), 0.98 (s, 6H).

Synthesis of 5-(2-ethylhexyl)-8-(trifluoromethyl)benzo[c][1,5]naphthyridin-6(5H)-one (3). The mixture of compound (2) (4 g, 10.62 mmol), Pd(PPh₃)₄ (0.6 g, 0.53 mmol), Na₂CO₃ (3.18 g, 53.10 mmol), and of 2-(dimethylamino)ethyl methacrylate (DMA) (30 mL) was stirred at 150 °C for 24 h. Then the reaction mixture was cooled to RT and water (50 mL) was added. The resulting mixture was extracted with DCM (100 mL) and the organic phase was dried over anhydrous Na₂SO₄. The solvent was evaporated off, and the solid residue was purified by column

chromatography on silica gel using EtOAc:n-hexane (10:90% v/v) as an eluent to afford **3** as a colorless liquid (3 g, yield: 75%). ¹H NMR (300 MHz, CDCl₃, δ): 8.99-8.96 (d, 1H), 8.79 (s, 1H), 8.61 (s, 1H), 8.03-8.01 (d, 1H), 7.73-7.70 (d, 1H), 7.51 (s, 1H), 4.38-4.27 (d, 2H), 1.90 (s, 1H), 1.40-1.29 (m, 8H), 0.94-0.87 (m, 6H).

Synthesis of N-(2-chloropyridine-3-yl)-N-(2-ethylhexyl)-3-methoxybenzamide (4). NaH (1.66 g, 41.50 mmol) was added to anhydrous THF (30 mL) and the mixture was cooled to 0 °C under N₂ atmosphere. Compound (1) (5 g, 20.75 mmol) was added to the reaction mixture and stirred for 1 h. After that, 3-methoxybenzoyl chloride (4.25 mL, 31.15mmol) was added and stirred for 8 h at RT. After completion of the reaction, the reaction mixture was slowly quenched by the addition of ice cold water (50 mL). Finally, the organic layer was extracted with DCM, washed with brine solution and dried over anhydrous Na₂SO₄. The solvent was evaporated off, and the solid residue was purified by column chromatography on silica gel using EtOAc:n-hexane (10:90% v/v) as an eluent to afford **4** as a colorless liquid (3 g, yield: 63%). ¹H NMR (300 MHz, CDCl₃, δ): 8.24 (s, 1H), 7.71-7.37 (d, 2H), 7.13-7.05 (d, 2H), 6.85-6.77 (d, 2H), 4.32 (s, 1H), 3.69 (s, 3H), 3.43-3.34 (t, 1H), 1.46-1.25 (m, 8H), 0.89-0.82 (m, 6H).

Synthesis of 5-(2-ethylhexyl)-8-methoxybenzo[c][1,5]naphthyridin-6(5H)-one (5). The mixture of compound (4) (1.25 g, 3.34 mmol), Pd(PPh₃)₄ (0.19 g, 0.16 mmol), Na₂CO₃ (1.76 g, 16.70 mmol), and of DMA (30 mL) was stirred at 150 °C for 24 h. Then the reaction mixture was cooled to RT and water (50 mL) was added. The resulting mixture was extracted with DCM (100 mL) and the organic phase was dried over anhydrous Na₂SO₄. The solvent was evaporated off, and the solid residue was purified by column chromatography on silica gel using EtOAc:n-hexane (10:90% v/v) as an eluent to afford **5** as a colorless liquid (0.7 g, yield: 56%). ¹H NMR (300 MHz, DMSO-d₆, δ): 8.70 (s, 1H), 8.53 (s, 1H), 7.91 (s, 1H), 7.76 (s, 1H), 7.54 (s, 2H), 4.34-4.28 (d, 2H), 3.92 (s, 3H), 1.87 (s, 1H), 1.30-1.19 (m, 8H), 0.84-0.82 (m, 6H).

Synthesis of N-(2-chloropyridin-3-yl)-N-(2-ethylhexyl)benzamide (6). NaH (1.66 g, 41.50 mmol) was added to anhydrous THF (30 mL) and the mixture was cooled to $0 \,^{\circ}$ C under N₂ atmosphere. Compound (1) (5 g, 20.75 mmol) was added to the reaction mixture and stirred for 1 h. After that, 3-benzoyl chloride (4.25 mL, 31.15mmol) was added and stirred for 8 h at RT. After

completion of the reaction, the reaction mixture was quenched by the addition of water (50 mL). Finally, the organic layer was extracted with DCM, washed with brine solution and dried over anhydrous Na₂SO₄. The solvent was evaporated off, and the solid residue was purified by column chromatography on silica gel using EtOAc:n-hexane (20:80% v/v) as an eluent to afford **6** as a white solid (3.6 g, yield: 72%). ¹H NMR (300 MHz, CDCl₃, δ): 8.24 (s, 1H), 7.71-7.37 (d, 2H), 7.13-7.05 (d, 3H), 6.85-6.77 (d, 2H), 4.32 (s, 1H), 3.43-3.34 (t, 1H), 1.46-1.25 (m, 8H), 0.89-0.82 (m, 6H).

Synthesis of 5-(2-ethylhexyl)benzo[c][1,5]naphthyridin-6(5H)-one (7). The mixture of compound (6) (1.25 g, 3.34 mmol), Pd(PPh₃)₄ (0.19 g, 0.16 mmol), Na₂CO₃ (1.76 g, 16.70 mmol), and of DMA (30 mL) was stirred at 150 °C for 24 h. Then the reaction mixture was cooled to RT and water (50 mL) was added. The resulting mixture was extracted with DCM (100 mL) and the organic phase was dried over anhydrous Na₂SO₄. The solvent was evaporated off, and the solid residue was purified by column chromatography on silica gel using EtOAc:n-hexane (10:90% v/v) as an eluent to afford 7 as a colorless liquid (0.8 g, yield: 70%). ¹H NMR (300 MHz, CDCl₃, δ): 8.88-8.85 (d, 1H), 8.57-8.49 (t, 2H), 7.85-7.80 (t, 1H), 7.68-7.66 (d, 2H), 7.46-7.42 (m, 1H), 4.37-4.28 (d, 2H), 1.19 (d, 1H), 1.40-1.27 (m, 8H), 0.95-0.86 (m, 6H).

Fig. S1. ¹H NMR and mass spectra of Ir1, Ir2 and Ir3.

Fig. S2. PL spectra of Ir1 (a), Ir2 (b) and Ir3 (c) in different solvents.

Fig. S3. PL decay curves for Ir1, Ir2 and Ir3 measured in CH_2Cl_2 solution.

Fig. S4. TGA curve of Ir1, Ir2 and Ir3.

Fig. S5. DSC curve for Ir1, Ir2 and Ir3.

Fig. S6. CV of Ir1, Ir2 and Ir3.

Fig. S7. The corresponding overlapping spectra between the PL and UV-Vis spectra of hosts and dopants in solid state.

g. S8. Surface morphologies (3D images) studies with TCTA:TPBi:15% of dopants in chlorobenzene and cyclohexanone solvents processed films.

Fig. S9. a) J-V curves of EODs, b) J-V curves of HODs using commercial PEDOT:PSS, c) J-V curves of HODs using m-PEDOT:PSS, d) Energy levels diagram of EOD and, e) Energy levels diagram of HOD.

Fig. S11. Device lifetime for Ir1, Ir2 and Ir3 at initial luminescence 500 cd m⁻².

Salvanta	Ir1	Ir2	Ir3	
Solvents	λ_{max} Emission (nm)	λ_{max} Emission (nm)	λ_{max} Emission (nm)	
Toluene	519	506	522	
THF	521	509	523	
Dichloromethane	515	504	517	
Acetonitrile	517	506	518	
Methanol	513	507	518	
N,N-	520	509	522	
Dimethyformamide	520	508	322	
Chloroform	514	505	516	

Table S1. Emission solvatochromism of Ir1, Ir2 and Ir3 in different solvents.

Table S2.	Sheet resistance	e and electrical con	nductivity of con	nmercial PEDOT:PS	SS (Al4083) and
m-PEDOT	Г:PSS.				

Hole injection	Sheet resistance	Thickness	Electrical conductivity
material	(Ω/sq)	(nm)	(S/cm)
PEDOT:PSS(Al4083	35,150,000	40.4	0.007
m-PEDOT:PSS	201,828	39.8	1.245

Dopant	EQE _{max} (%)	CE _{max} (cd/A)	Solvent for device	Reference
			fabrication	
Ir1	23.60	85.22	Cyclohexanone	This work
Ir3	22.40	81.63	Cyclohexanone	This work
Ir(ppy) ₃	22	78	Tetrahydrofuran	1
Ir(mppy) ₃	15.5	54.0	Toluene	2
IrppyD	-	54	Toluene	3
IrG	13.75	49.50	Isopropanol	4
G2	21.2	68.4	Isobutanol	5
IrG1	10.8	38.43	n-butyl alcohol	6

Table S3. Literature summary of non-halogenated solvent-processed green PHOLEDs.

References

- 1. N. Aizawa, Y. -J. Pu, M. Watanabe, T. Chiba, K. Ideta, N. Toyota, M. Igarashi, Y. Suzuri, H. Sasabe, J. Kido, *Nat. Commun.*, 2014, **5**, 5756.
- 2. J. Wang, H. Liu, S. Wu, Y. Jia, H. Yu, X. Li, S. Wang, Chem. Eng. J., 2020, 391, 123479.
- 3. O. V. Salata, Z. Liu, A. Safonov, N. Mustapha, S. -C. Lo, P. Burn, I. Samuel, J. Markham, *Proc. SPIE.*, 2002, **4918**, 117.
- 4. C. Wu, Z. -M. Zhong, X. -G. Li, Y. Xiao, F. Peng, X. Wang, Z. -Q. Huang, S. -R. Wang, L. Ying, *Dyes Pigm.*, 2018, **158**, 20.
- 5. S. Wang, B. Zhang, Y. Wang, J. Ding, Z. Xie, L. Wang, Chem. Commun., 2017, 53, 5128.
- 6. F. Chen, S. Wang, Y. Xiao, F. Peng, N. Zhou, L. Ying, X. Li, Chem. Asian J., 2018, 13, 1335.