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Figure S1. (a) and (b) GS-VM piezoresistive sensors; (c) testing method of the specimen.



Figure 2s. (a-e) XPS of the vein of the dead leaf presents the overall analysis, B 1s, C 1s, N 1s, and 

O 1s, respectively.
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Figure S3. The electronic energy band; (a) the energy band in the strain-free state; (b-f) the energy 

band when subjected to 1% mechanical strain along different θ-directions.

Appendix A

To qualitatively estimate the equivalent resistance of GS-VM, we assumed that the number of 

resistors at every level, i.e., s[L(k)], mainly depended on the fractal feature at each level. k (1,2,3, ..., 

n-1, n, ...) represents a certain level of the GS-VM, and s[L(k)] is the number of resistors. Therefore, 

the equivalent resistance of a certain level can be expressed by Equation (A.1) due to the self-similar 

nature of fractals [1].



                                  

1
𝑅𝐿(𝑘)

=
𝑠[𝐿(𝑘)]

𝜆𝑘𝑅𝐿(0)

(A.1)

Thus, the total equivalent resistance of GS-VM can be expressed by Equation (A.2).

                                                                                              (A.2)
𝑅 =

∞

∑
𝑘 = 0

𝜆𝑘

𝑠[𝐿(𝑘)]
𝑅𝐿(0)

where  represents the scalar of this fractal structure, , and the resistance of the first top-𝜆 𝜆 ∈ (0,1)

level is  . If we assume that s[L(k)] = k, then the total equivalent resistance of the GS-VM can 𝑅𝐿(0)

be computed in Equation (A.3) when k goes to infinity.

                                                         
𝑅 = 𝑅𝐿(0)𝑙𝑜𝑔⁡(

1
1 ‒ 𝜆

)

(A.3)

Equation (A.3) implies if the number of levels in the multi-level network goes to infinity, then the 

total resistance can be converged. This means that the GS-VM would not change its total equivalent 

resistance with a more complex fractal structure, but it will improve its ability to experience large 

deformations. Therefore, the GS-VM shows satisfactory repeatability.

Appendix B

The well-known relation is presented in Equation (B.1), where R, l, S, and  denote the resistance, 𝜌

length, crossing-area, and resistivity, respectively. 

                                                                               (B.1)
𝑅 =

𝑙
𝑆

𝜌

Hence, GF is defined as:



                                                                                                                                    
𝐺𝐹 =

1
𝜀

𝑅 ‒ 𝑅0

𝑅0

(B.2)

Here, the subscript 0 represents the strain-free state, and  is the applied strain. If the geometric 𝜀

parameters are ignored, substituting Equation (B.1) into Equation (B.2), Equation (B.2) can be 

expressed as:

                                                                  (B.3)
𝐺𝐹 =

1
𝜀

(
𝜌
𝜌0

‒ 1)

However, the carriers, i.e., electrons and holes, play an important role in conductivity (reciprocal 

resistivity). Hence, the conductivity can be expressed as:

                                                              (B.4)𝜎 = 𝑛𝑞𝜇𝑒 + 𝑝𝑞𝜇ℎ

where  and  are the electron and hole mobilities, respectively, and q is the elementary electrical 𝜇𝑒 𝜇ℎ

charge.

                                                                       (B.5a)
𝜇𝑒 =

𝑞𝜏𝑒

𝑚 ∗
𝑒

and

                                                                       (B.5b) 
𝜇ℎ =

𝑞𝜏ℎ

𝑚 ∗
ℎ

                                                                                                              

where m* is the effective mass,  is the relaxation time, and the subscripts e and h represent electrons 𝜏

in the conduction band and holes in the valence band, respectively. Furthermore,

                                                                          (B.6)

1

𝑚 ∗
=

1

ℏ2

∂2𝜖
∂𝑘∂𝑘



where ℏ is Planck’s constant, and k is the wavenumber vector. In Equation (B.4),  and  represent  𝑛 𝑝

the concentrations of electrons and holes, respectively. The concentrations of electrons can be 

calculated by:

                                                                    (B.7)

𝑛 =
∞

∫
𝜖𝑐

‍𝐷𝑒(𝜖)𝑓(𝜖)𝑑𝜖

and

                                                             (B.8)
𝑝 =

𝜖𝑣

∫
‒ ∞

‍𝐷ℎ(𝜖)[1 ‒ 𝑓(𝜖)]𝑑𝜖

where  is the Fermi-Dirac distribution, which is given by:𝑓(𝜖)

                                                                 (B.9)
𝑓(𝜖) =

1
𝑒𝑥𝑝[(𝜖 ‒ 𝜖𝐹)/𝑘𝐵𝑇] + 1

where , , , , and  represent the density of states, the energy of the electronic band, Fermi 𝐷(𝜖) 𝜖 𝜖𝐹 𝑘𝐵 𝑇

energy, Boltzmann’s constant, and temperature, respectively. Equations (B.4)-(B.9) were introduced 

by Kittel [2]. Therefore, the electrical conductivity can be summarized as:

                              (B.10)

𝜎 =
𝑞2𝜏𝑒

ℏ2

∞

∫
𝜖𝑐

‍
∂2𝜖

∂𝑘∂𝑘
𝐷𝑒(𝜖)

1

exp [𝜖 ‒ 𝜖𝐹

𝑘𝐵𝑇 ] + 1

𝑑𝜖 +
𝑞2𝜏ℎ

ℏ2

𝜖𝑣

∫
‒ ∞

‍
∂2𝜖

∂𝑘∂𝑘
𝐷𝑒(𝜖)[1 ‒

1

exp [𝜖 ‒ 𝜖𝐹

𝑘𝐵𝑇 ] + 1
]𝑑𝜖

The subscripts  and  represent the conduction and valence bands, respectively. First, all relaxation 𝑐 𝑣

times were considered to be constant to conveniently use Gamil’s idea [3]. The right sides of Equations 

(B.6)-(B.8) were then discretized to obtain:

                                                     

1

𝑚 ∗
=

1

ℏ2

𝜖(𝑘 + 2Δ𝑘) + 𝜖(𝑘) ‒ 2𝜖(𝑘 + Δ𝑘)

Δ𝑘2

(B.11)



                                                      (B.12)
𝑛𝑖 =

1
𝐴

∞

∑
𝑖 = 𝑗 + 1

‍𝑤𝑘𝑖
𝑓[𝜖(𝑘𝑖)]

                                                    (B.13)
𝑝𝑖 =

1
𝐴

𝑗

∑
𝑖 = 0

‍𝑤𝑘𝑖
(1 ‒ 𝑓[𝜖(𝑘𝑖)])

where index  represents the number of sub-bands in the electronic energy band structure, and j is the 𝑖

number of the valence band.  is the area of the boron-doped graphene supercell. , calculated by 𝐴 𝑤𝑘𝑖

Newton-Cotes integration[4], is the weight coefficient of . Here k represents the wavenumber along 𝑘

the stretch direction. Combining Equation (B.3) and Equations (B.11)-(B.13), the GF at the atomic 

scale can, therefore, be given in Equation (3).

Appendix C

The stretch direction can be defined by Equation (C.1), where u and v represent the vector coordinates 

of stretching in the Cartesian system.         

                                                                                                                          (C.1)
𝜃(𝑢,𝑣) = 𝑎𝑡𝑎𝑛⁡(

𝑢
𝑣

)

a and b can be expressed by Equations (C.2a)-(C.2b) in the gj-system. 

                                                                         (C.2a)𝑎 = 𝑎𝑖𝑔𝑖

                                                                           (C.2b) 𝑏 = 𝑏𝑖𝑔𝑖

However, 

                                                                                                                           (C.3)𝑔𝑗 = 𝐹𝑒𝑗

where F can be calculated by Equation (C.4) according to the crystal structure of the supercell.



                                                                                         (C.4)

𝐹 = 𝑣0sin (𝜋
6)[

𝑐𝑜𝑠⁡(𝜃)

𝑠𝑖𝑛⁡(
𝜋
3

+ 𝜃)

𝑠𝑖𝑛⁡(𝜃)

𝑠𝑖𝑛⁡(
𝜋
3

+ 𝜃)

‒
𝑠𝑖𝑛⁡(𝜃)

𝑠𝑖𝑛⁡(
5𝜋
6

‒ 𝜃)

𝑐𝑜𝑠⁡(𝜃)

𝑠𝑖𝑛⁡(
5𝜋
6

‒ 𝜃)
]

Hence, 

                                                                       (C.5a)

   { 𝑔1 = 𝑣0sin (𝜋
6)[ cos (𝜃)

sin (𝜋
3

+ 𝜃)
𝑒1 +

𝑠𝑖𝑛⁡(𝜃)

𝑠𝑖𝑛⁡(
𝜋
3

+ 𝜃)
𝑒2]

𝑔2 = 𝑣0sin (𝜋
6)[ ‒

sin (𝜃)

sin (5𝜋
6

‒ 𝜃)
𝑒1 +

𝑐𝑜𝑠⁡(𝜃)

𝑠𝑖𝑛⁡(
5𝜋
6

‒ 𝜃)
𝑒2] �

                                                       (C.5b)

𝐹 ‒ 1 =
1

𝑣0sin (𝜋
6)[cos (𝜃)𝑠𝑖𝑛⁡(

𝜋
3

+ 𝜃) - sin (𝜃)𝑠𝑖𝑛⁡(
5𝜋
6

‒ 𝜃)

sin (𝜃)𝑠𝑖𝑛⁡(
𝜋
3

+ 𝜃) cos (𝜃)𝑠𝑖𝑛⁡(
5𝜋
6

‒ 𝜃) ]
In Equations (C.5a)-(C.5b),  can be easily calculated via the crystal structure parameters in the 𝑣0

strain-free state.

For convenience,

                                                                                                                                           (C.6)𝐵 = 𝐹 ‒ 1

Hence, 

                                                                                                                                      (C.7a)𝑎 = 𝐶𝐵𝑎0

                                                                                                                                      (C.7b)𝑏 = 𝐶𝐵𝑏0

C can be represented by Equation (C.8a), while a0 and b0 are the crystal structure parameters in the 

Cartesian coordinate system, which can be calculated by Equations (C.8b)-(C.8c). 



C                                                        (C.8a)

= [1 +
𝜀
2

0

0 1 ‒
𝜀𝜈
2

]
                                                       (C.8b)

𝑎0 = (
3

3
𝑣0, ‒ 𝑣0) 

                                                        (C.8c)
𝑏0 = (

3
3

𝑣0, 𝑣0) 

In Equation (C.8a),  and  are applied strain and Poisson’s ratio, respectively.    was equal to 0.14 𝜀 𝜈 𝜈

and 0.28 when the crystal structure underwent stretching along the zigzag- and armchair-directions, 

respectively [3]. In this paper,  was calculated using linear interpolation when stretched in the zigzag- 𝜈

and armchair-directions in Equation (C.9)

                                                                                                                         (C.9)𝜈 = 0.14𝑢 + 0.28𝑣

Moreover,

                                                                                                                                (C.10a)𝐺𝑖𝑗 = 𝑔𝑖 ∙ 𝑔𝑗

where Gij represents the components of the metric tensor, whose matrix form can be obtained using 

Equation (C.10b):

                                                                                   (C.10b)

𝐺 = [𝑣0sin (𝜋
6)]2[

1

sin2 (𝜋
3

+ 𝜃)
0

0
1

sin2 (5𝜋
6

‒ 𝜃)]
Combining Equations (C.6)-(C.10b) and then substituting them into Equations (4a)-(4b), then the 

supercell parameters listed in Table 2 can be calculated.
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