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Digital

Figure S1. (a) and (b) GS-VM piezoresistive sensors; (c) testing method of the specimen.
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Figure 2s. (a-e) XPS of the vein of the dead leaf presents the overall analysis, B 1s, C 1s, N 1s, and

O 1s, respectively.
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Figure S3. The electronic energy band; (a) the energy band in the strain-free state; (b-f) the energy

band when subjected to 1% mechanical strain along different #-directions.

Appendix A

To qualitatively estimate the equivalent resistance of GS-VM, we assumed that the number of
resistors at every level, i.e., s[L(k)], mainly depended on the fractal feature at each level. £ (1,2,3, ...,
n-1, n, ...) represents a certain level of the GS-VM, and s[L(k)] is the number of resistors. Therefore,
the equivalent resistance of a certain level can be expressed by Equation (A.1) due to the self-similar

nature of fractals [1].



1 _s[L(k)]
Ry AkRL(O)

(A.1)

Thus, the total equivalent resistance of GS-VM can be expressed by Equation (A.2).

R= RL(O)
kz::Os[L(k)] a2

where 4 represents the scalar of this fractal structure, A€ (0:1), and the resistance of the first top-

level is RL(O) . If we assume that s[L(k)] = k, then the total equivalent resistance of the GS-VM can

be computed in Equation (A.3) when k goes to infinity.

(A.3)

Equation (A.3) implies if the number of levels in the multi-level network goes to infinity, then the
total resistance can be converged. This means that the GS-VM would not change its total equivalent
resistance with a more complex fractal structure, but it will improve its ability to experience large

deformations. Therefore, the GS-VM shows satisfactory repeatability.

Appendix B
The well-known relation is presented in Equation (B.1), where R, /, S, and P denote the resistance,

length, crossing-area, and resistivity, respectively.

R=-—
s (B.1)

Hence, GF is defined as:



(B.2)

Here, the subscript 0 represents the strain-free state, and € is the applied strain. If the geometric
parameters are ignored, substituting Equation (B.1) into Equation (B.2), Equation (B.2) can be

expressed as:

1p
GF =—(-—-1)
€ Po (B.3)

However, the carriers, i.e., electrons and holes, play an important role in conductivity (reciprocal

resistivity). Hence, the conductivity can be expressed as:

0 =nqu, + pquy, (B.4)

where e and M are the electron and hole mobilities, respectively, and ¢ is the elementary electrical

charge.
qt,
He=—
Me (B.52)
and
qty,
Hp=—;
my

(B.5b)

where m” is the effective mass, 7 is the relaxation time, and the subscripts e and % represent electrons

in the conduction band and holes in the valence band, respectively. Furthermore,

1 1 9%

m*  p20kok

(B.6)



where # is Planck’s constant, and k is the wavenumber vector. In Equation (B.4), ™ and P represent

the concentrations of electrons and holes, respectively. The concentrations of electrons can be

calculated by:
n= f D, (e)f (e)de
‘e (B.7)

and

€

p= f D41 - f(e)]de

— o (B.8)

where f(€) is the Fermi-Dirac distribution, which is given by:
fle)=
exp[(e - €p)/kpT] + 1 (B.9)

where D(E), €, €F , kp ,and T represent the density of states, the energy of the electronic band, Fermi
energy, Boltzmann’s constant, and temperature, respectively. Equations (B.4)-(B.9) were introduced

by Kittel (2. Therefore, the electrical conductivity can be summarized as:

€

CIZTe OOT 0% 1 CIzTh . 0% 1

=D (e) d D)1 -———|de
w2 J Kok w2 J Kok .

€ +1 - exp

c exp

g =

€-€p

+1

B B

(B.10)

The subscripts € and V represent the conduction and valence bands, respectively. First, all relaxation
times were considered to be constant to conveniently use Gamil’s idea Bl. The right sides of Equations
(B.6)-(B.8) were then discretized to obtain:

1 1e(k+2bk) + e(k) - 2e(k + Ak)
m*  h? Ak?

(B.11)



(B.12)

1 J
=7, Wi (1~ fleCk))
i=0 (B.13)

where index { represents the number of sub-bands in the electronic energy band structure, and j is the

w
number of the valence band. 4 is the area of the boron-doped graphene supercell. ki, calculated by
Newton-Cotes integration[, is the weight coefficient of K. Here & represents the wavenumber along
the stretch direction. Combining Equation (B.3) and Equations (B.11)-(B.13), the GF at the atomic

scale can, therefore, be given in Equation (3).

Appendix C
The stretch direction can be defined by Equation (C.1), where u and v represent the vector coordinates

of stretching in the Cartesian system.

(C.1)
a and b can be expressed by Equations (C.2a)-(C.2b) in the g;-system.
a=adly, (C.2a)
b="b'g, (C.2b)
However,
g;=Fe; (C.3)

where F can be calculated by Equation (C.4) according to the crystal structure of the supercell.
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In Equations (C.5a)-(C.5b), Y0 can be easily calculated via the crystal structure parameters in the

strain-free state.

For convenience,

B=F1 (C.6)
Hence,

a=CBa, (C.7a)

b= CBb, (C.7b)

C can be represented by Equation (C.8a), while ay and b, are the crystal structure parameters in the

Cartesian coordinate system, which can be calculated by Equations (C.8b)-(C.8c¢).



C 2 (C.8a)

=5V ~¥) (C.8b)

bo= 5V o) (C.8¢)

In Equation (C.8a), € and V are applied strain and Poisson’s ratio, respectively. V was equal to 0.14
and 0.28 when the crystal structure underwent stretching along the zigzag- and armchair-directions,
respectively Bl In this paper, V was calculated using linear interpolation when stretched in the zigzag-

and armchair-directions in Equation (C.9)

v=0.14u + 0.28v (C.9)
Moreover,
G;=9:"9; (C.10a)

where G represents the components of the metric tensor, whose matrix form can be obtained using

Equation (C.10b):

0
sin® (E + 9)
_ . (M2 3
G = [vysin (—)] 1
6 0
9 (57‘[ )
sin“(—-0
. 6 . (C.10b)

Combining Equations (C.6)-(C.10b) and then substituting them into Equations (4a)-(4b), then the

supercell parameters listed in Table 2 can be calculated.
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