Supporting Information

Giant Piezoresistive Gauge Factor in Vein-membrane/Graphene Sensors with a

Wide Linear Working Range

Zongheng Li ${ }^{a}$, Huiming Ning ${ }^{a, b,{ }^{*},}$, Ning Hu ${ }^{c, d,{ }^{*},}$, Yuanqing Li ${ }^{a}$, Long Qiao ${ }^{a}$
${ }^{\text {a }}$ College of Aerospace Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
${ }^{\mathrm{b}}$ State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha 410044, People's Republic of China
'State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300401, People's Republic of China
${ }^{\mathrm{d}}$ School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China

Corresponding author: Ning Hu; Huiming Ning

E-mails: ninghu@hebut.edu.cn (or ninghu@cqu.edu.cn); ninghuiming@cqu.edu.cn

Figure S1. (a) and (b) GS-VM piezoresistive sensors; (c) testing method of the specimen.

Figure 2s. (a-e) XPS of the vein of the dead leaf presents the overall analysis, $\mathrm{B} 1 s, \mathrm{C} 1 s, \mathrm{~N} 1 s$, and O $1 s$, respectively.

Figure S3. The electronic energy band; (a) the energy band in the strain-free state; (b-f) the energy band when subjected to 1% mechanical strain along different θ-directions.

Appendix A

To qualitatively estimate the equivalent resistance of GS-VM, we assumed that the number of resistors at every level, i.e., $s[L(k)]$, mainly depended on the fractal feature at each level. $k(1,2,3, \ldots$, $\mathrm{n}-1, \mathrm{n}, \ldots)$ represents a certain level of the GS-VM, and $s[L(k)]$ is the number of resistors. Therefore, the equivalent resistance of a certain level can be expressed by Equation (A.1) due to the self-similar nature of fractals ${ }^{[1]}$.

$$
\frac{1}{R_{L(k)}}=\frac{s[L(k)]}{\lambda^{k} R_{L(0)}}
$$

(A.1)

Thus, the total equivalent resistance of GS-VM can be expressed by Equation (A.2).

$$
\begin{equation*}
R=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{s[L(k)]} R_{L(0)} \tag{A.2}
\end{equation*}
$$

where λ represents the scalar of this fractal structure, $\lambda \in(0,1)$, and the resistance of the first toplevel is $R_{L(0)}$. If we assume that $s[L(k)]=k$, then the total equivalent resistance of the GS-VM can be computed in Equation (A.3) when k goes to infinity.

$$
\begin{equation*}
R=R_{L(0)} \log \left(\frac{1}{1-\lambda}\right) \tag{A.3}
\end{equation*}
$$

Equation (A.3) implies if the number of levels in the multi-level network goes to infinity, then the total resistance can be converged. This means that the GS-VM would not change its total equivalent resistance with a more complex fractal structure, but it will improve its ability to experience large deformations. Therefore, the GS-VM shows satisfactory repeatability.

Appendix B

The well-known relation is presented in Equation (B.1), where R, l, S, and ρ denote the resistance, length, crossing-area, and resistivity, respectively.

$$
\begin{equation*}
R=\frac{l}{S} \rho \tag{B.1}
\end{equation*}
$$

Hence, GF is defined as:

$$
G F=\frac{1^{R-R_{0}}}{\varepsilon R_{0}}
$$

(B.2)

Here, the subscript 0 represents the strain-free state, and ε is the applied strain. If the geometric parameters are ignored, substituting Equation (B.1) into Equation (B.2), Equation (B.2) can be expressed as:

$$
\begin{equation*}
G F=\frac{1}{\varepsilon}\left(\frac{\rho}{\rho_{0}}-1\right) \tag{B.3}
\end{equation*}
$$

However, the carriers, i.e., electrons and holes, play an important role in conductivity (reciprocal resistivity). Hence, the conductivity can be expressed as:

$$
\begin{equation*}
\sigma=n q \mu_{e}+p q \mu_{h} \tag{B.4}
\end{equation*}
$$

where μ_{e} and μ_{h} are the electron and hole mobilities, respectively, and q is the elementary electrical charge.

$$
\begin{equation*}
\mu_{e}=\frac{q \tau_{e}}{m_{e}^{*}} \tag{B.5a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{h}=\frac{q \tau_{h}}{m_{h}^{*}} \tag{B.5b}
\end{equation*}
$$

where m^{*} is the effective mass, ${ }^{\tau}$ is the relaxation time, and the subscripts e and h represent electrons in the conduction band and holes in the valence band, respectively. Furthermore,

$$
\begin{equation*}
\frac{1}{m^{*}}=\frac{1 \partial^{2} \epsilon}{\hbar^{2} \partial k \partial k} \tag{B.6}
\end{equation*}
$$

where \hbar is Planck's constant, and \boldsymbol{k} is the wavenumber vector. In Equation (B.4), n and p represent the concentrations of electrons and holes, respectively. The concentrations of electrons can be calculated by:

$$
\begin{equation*}
n=\int_{\epsilon_{c}}^{\infty} \int_{e}(\epsilon) f(\epsilon) d \epsilon \tag{B.7}
\end{equation*}
$$

and

$$
\begin{equation*}
p=\int_{-\infty}^{\epsilon_{v}}{ }_{Y} D_{h}(\epsilon)[1-f(\epsilon)] d \epsilon \tag{B.8}
\end{equation*}
$$

where $f(\epsilon)$ is the Fermi-Dirac distribution, which is given by:

$$
\begin{equation*}
f(\epsilon)=\frac{1}{\exp \left[\left(\epsilon-\epsilon_{F}\right) / k_{B} T\right]+1} \tag{B.9}
\end{equation*}
$$

where $D(\epsilon), \epsilon, \epsilon_{F},{ }_{B}$, and T represent the density of states, the energy of the electronic band, Fermi energy, Boltzmann's constant, and temperature, respectively. Equations (B.4)-(B.9) were introduced by Kittel ${ }^{[2]}$. Therefore, the electrical conductivity can be summarized as:

$$
\begin{equation*}
\sigma=\frac{q^{2} \tau_{e}}{\hbar^{2}} \int_{\epsilon_{c}}^{\infty} \oint_{\neq}^{\partial \partial^{2} \epsilon} D_{e}(\epsilon) \frac{1}{\exp \left[\frac{\epsilon-\epsilon_{F}}{k_{B} T}\right]+1} d \epsilon+\frac{q^{2} \tau_{h}}{\hbar^{2}} \int_{-\infty}^{\epsilon_{\nu}} \hat{\partial}^{2} \frac{\partial^{2} \epsilon}{\partial k \partial k} D_{e}(\epsilon)\left[1-\frac{1}{\exp \left[\frac{\epsilon-\epsilon_{F}}{k_{B} T}\right]+1}\right] d \epsilon \tag{B.10}
\end{equation*}
$$

The subscripts ${ }^{c}$ and v represent the conduction and valence bands, respectively. First, all relaxation times were considered to be constant to conveniently use Gamil's idea ${ }^{[3]}$. The right sides of Equations (B.6)-(B.8) were then discretized to obtain:

$$
\begin{equation*}
\frac{1}{m^{*}}=\frac{1 \epsilon(k+2 \Delta k)+\epsilon(k)-2 \epsilon(k+\Delta k)}{\hbar^{2}} \tag{B.11}
\end{equation*}
$$

$$
\begin{gather*}
n_{i}=\frac{1}{A} \sum_{i=j+1}^{\infty}{ }_{w_{k}} f\left[\epsilon\left(k_{i}\right)\right] \tag{B.12}\\
p_{i}=\frac{1}{A} \sum_{i=0}^{j}{ }_{\hat{l}} w_{k_{i}}\left(1-f\left[\epsilon\left(k_{i}\right)\right]\right) \tag{B.13}
\end{gather*}
$$

where index ${ }^{i}$ represents the number of sub-bands in the electronic energy band structure, and j is the number of the valence band. A is the area of the boron-doped graphene supercell. ${ }^{w_{k i}}$, calculated by Newton-Cotes integration ${ }^{[4]}$, is the weight coefficient of k. Here k represents the wavenumber along the stretch direction. Combining Equation (B.3) and Equations (B.11)-(B.13), the GF at the atomic scale can, therefore, be given in Equation (3).

Appendix C

The stretch direction can be defined by Equation (C.1), where u and v represent the vector coordinates of stretching in the Cartesian system.

$$
\begin{equation*}
\theta(u, v)=\operatorname{atan}\left(\frac{u}{v}\right) \tag{C.1}
\end{equation*}
$$

\boldsymbol{a} and \boldsymbol{b} can be expressed by Equations (C.2a)-(C.2b) in the \boldsymbol{g}_{j}-system.

$$
\begin{align*}
& a=a^{i} g_{i} \tag{C.2a}\\
& b=b^{i} g_{i} \tag{C.2b}
\end{align*}
$$

However,

$$
\begin{equation*}
g_{j}=F e_{j} \tag{C.3}
\end{equation*}
$$

where F can be calculated by Equation (C.4) according to the crystal structure of the supercell.

$$
\left.F=v_{0} \sin \left(\frac{\pi}{6}\right) \left\lvert\, \begin{array}{cc}
\frac{\cos (\theta)}{\sin \left(\frac{\pi}{3}+\theta\right)} & \frac{\sin (\theta)}{\sin \left(\frac{\pi}{3}+\theta\right)} \tag{C.4}\\
-\frac{\sin (\theta)}{\sin \left(\frac{5 \pi}{6}-\theta\right)} & \frac{\cos (\theta)}{\sin \left(\frac{5 \pi}{6}-\theta\right)}
\end{array}\right.\right]
$$

Hence,

$$
\left.\begin{array}{l}
g_{1}=v_{0} \sin \left(\frac{\pi}{6}\right)\left[\frac{\cos (\theta)}{\sin \left(\frac{\pi}{3}+\theta\right)} e_{1}+\frac{\sin (\theta)}{\sin \left(\frac{\pi}{3}+\theta\right)} e_{2}\right.
\end{array}\right],\left[\begin{array}{l}
g_{2}=v_{0} \sin \left(\frac{\pi}{6}\right)\left[-\frac{\sin (\theta)}{\sin \left(\frac{5 \pi}{6}-\theta\right)} e_{1}+\frac{\cos (\theta)}{\sin \left(\frac{5 \pi}{6}-\theta\right)} e_{2}\right.
\end{array}\right]
$$

In Equations (C.5a)-(C.5b), ${ }^{v_{0}}$ can be easily calculated via the crystal structure parameters in the strain-free state.

For convenience,

$$
\begin{equation*}
B=F^{-1} \tag{C.6}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& a=C B a_{0} \tag{C.7a}\\
& b=C B b_{0} \tag{C.7b}
\end{align*}
$$

\boldsymbol{C} can be represented by Equation (C.8a), while $\boldsymbol{a}_{\boldsymbol{0}}$ and $\boldsymbol{b}_{\boldsymbol{0}}$ are the crystal structure parameters in the Cartesian coordinate system, which can be calculated by Equations (C.8b)-(C.8c).

$$
C=\left[\begin{array}{cc}
1+\frac{\varepsilon}{2} & 0 \tag{C.8a}\\
0 & 1-\frac{\varepsilon v}{2}
\end{array}\right]
$$

$$
\begin{gather*}
a_{0}=\left(\frac{\sqrt{3}}{3} v_{0},-v_{0}\right) \tag{C.8b}\\
b_{0}=\left(\frac{\sqrt{3}}{3} v_{0}, v_{0}\right) \tag{C.8c}
\end{gather*}
$$

In Equation (C.8a), ε and v are applied strain and Poisson's ratio, respectively. v was equal to 0.14 and 0.28 when the crystal structure underwent stretching along the zigzag- and armchair-directions, respectively ${ }^{[3]}$. In this paper, ${ }^{v}$ was calculated using linear interpolation when stretched in the zigzagand armchair-directions in Equation (C.9)

$$
\begin{equation*}
v=0.14 u+0.28 v \tag{C.9}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
G_{i j}=g_{i} \cdot g_{j} \tag{C.10a}
\end{equation*}
$$

where $G_{i j}$ represents the components of the metric tensor, whose matrix form can be obtained using Equation (C.10b):

$$
G=\left[v_{0} \sin \left(\frac{\pi}{6}\right)\right]^{2}\left|\begin{array}{cc}
\frac{1}{\sin ^{2}\left(\frac{\pi}{3}+\theta\right)} & 0 \tag{C.10b}\\
0 & \left.\frac{1}{\sin ^{2}\left(\frac{5 \pi}{6}-\theta\right)}\right)
\end{array}\right|
$$

Combining Equations (C.6)-(C.10b) and then substituting them into Equations (4a)-(4b), then the supercell parameters listed in Table 2 can be calculated.

Reference

[1] Kirillov, A. A, A Tale of Two Fractals 2013, Springer Science \& Business Media.
[2] Kittel, C., Introduction to solid state physics 2005, John Wiley \& Sons. Inc., New York.
[3] Gamil, M.; Nakamura, K.; El-Bab, A. M. F.; Tabata, O.; El-Moneim, A. A., Simulation of graphene piezoresistivity based on density functional calculations. Modeling and Numerical Simulation of Material Science 2013, 3(04), 117
[4] Stoer, J.; Bulirsch, R., Introduction to numerical analysis 2013, (Vol. 12), Springer Science \& Business Media.

