Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

## **Electronic Supplementary Information**

## Antimony doped lead-free double perovskites (Cs<sub>2</sub>NaBi<sub>1-x</sub>Sb<sub>x</sub>Cl<sub>6</sub>) with

## enhanced light absorption and tunable emission

Shufang Wu,<sup>1,2</sup> Wenbo Li,<sup>1,2,3</sup> Junjie Hu,<sup>1,2,4</sup> and Peng Gao<sup>1,2,4</sup>\*

<sup>1</sup>CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

<sup>2</sup>Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China

<sup>3</sup>Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China

<sup>4</sup>University of Chinese Academy of Sciences, Beijing 100049, China

\*Correspondence: peng.gao@fjirsm.ac.cn; Tel: 0592-359-4003



**Fig. S1.** The supercells of  $Cs_2NaBiCl_6$  (a) and  $Cs_2NaSbCl_6$  (b) for computational calculation. Cs atoms, cyan; Na atoms, yellow; Bi atoms, violet; Sb atoms, brown; Cl atoms, green.



**Fig. S2.** a) The enlarged XRD patterns of  $Cs_2NaBi_{1-x}Sb_xCl_6$  (x = 0, 0.3, 0.5 and 1.0).  $Cs_3Sb_2Cl_9$ , CsCl, NaCl and other by-products are produced when x  $\ge$  0.3. b) The variation of cubic crystal lattice parameter and cell volume, as a function of Sb<sup>3+</sup> substitution proportion. The values of lattice parameter and cell volume are derived by using the Rietveld method.



**Fig. S3.** EDS elemental mapping of Cs, Na, Bi, Sb and Cl elements in Cs<sub>2</sub>NaBi<sub>0.95</sub>Sb<sub>0.05</sub>Cl<sub>6</sub> double perovskite microcrystals.



**Fig. S4.** EDS spectra for  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  double perovskite microcrystals. The inset table presents the corresponding approximate element quantification.



Fig. S5. XPS survey spectra (a), and the amplified peaks attributed to O 1s and Sb 3d (b) of  $Cs_2NaBi_{1-x}Sb_xCl_6$  (x = 0, 0.05 and 0.25).



**Fig. S6.** (a) TGA data for  $Cs_2NaBi_{1-x}Sb_xCl_6$  (x = 0, 0.05 and 0.25). (b) PXRD patterns of  $Cs_2NaBi_{0.75}Sb_{0.25}Cl_6$  measured under different conditions.



Fig. S7. Electronic density of states (DOS) for  $Cs_2NaBiCl_6(a)$  and  $Cs_2NaSbCl_6(b)$ .



**Fig. S8.** Pictures for the crystals of  $Cs_2NaBiCl_6$  (a, d),  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  (b, e), and  $Cs_2NaBi_{0.9}Sb_{0.1}Cl_6$  (c), and  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  (d) under daylight, prepared from the reaction solution with adding 3 µl HNO<sub>3</sub> (a-c) or 5 µl H<sub>2</sub>O<sub>2</sub> (d, e).



**Fig. S9.** Steady-state absorption spectra of  $CsNaBiCl_6$  without and with  $HNO_3$  (3 µl) in the hydrothermal reaction.



**Fig. S10.** Steady-state absorption spectra (a), PXRD patterns (b) and the normalized XRD patterns (c) of  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  double perovskites with different amounts of  $H_2O_2$  added in the hydrothermal reaction. Some weak diffraction peaks (marked with the symbol  $\checkmark$ ) that can be indexed to  $Cs_2Bi_{0.5}Sb_{0.5}Cl_6$ , are also observed in  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  crystals prepared by adding 20 µl  $H_2O_2$ .



**Fig. S11.** Bi 4f (a) and Sb 3d (b) XPS spectra for  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  with different amounts of diluted HNO<sub>3</sub> added in the hydrothermal reaction.



**Fig. S12.**-PL spectra of  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  double perovskites with different amounts of diluted HNO<sub>3</sub> added in the hydrothermal reaction.



**Fig. S13.** Tauc plots of  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  double perovskites with different amounts of diluted HNO<sub>3</sub> added in the hydrothermal reaction. The band-gap values are extracted by linear fitting to indirect band-gap Tauc plots.



Fig. S14. The effect of adding diluted HNO<sub>3</sub> in the hydrothermal reaction on the crystal structure. a) PXRD patterns and the enlarged diffraction peaks between  $23^{\circ} \sim 24^{\circ}$  of Cs<sub>2</sub>NaBi<sub>0.95</sub>Sb<sub>0.05</sub>Cl<sub>6</sub> double perovskites with different amounts of diluted HNO<sub>3</sub>. b) The normalized XRD patterns of Cs<sub>2</sub>NaBi<sub>0.95</sub>Sb<sub>0.05</sub>Cl<sub>6</sub> with 0 µl and 20 µl diluted HNO<sub>3</sub>. Second phase was observed in Cs<sub>2</sub>NaBi<sub>0.95</sub>Sb<sub>0.05</sub>Cl<sub>6</sub> crystals with 20 µl diluted HNO<sub>3</sub>.



**Fig. S15.** Pictures for the as-prepared crystals of  $Cs_2NaBiCl_6$  (a),  $Cs_2NaBi_{0.75}Sb_{0.25}Cl_6$  (b),  $Mn^{2+}$  doped  $Cs_2NaBiCl_6$  (c), and  $Mn^{2+}$  doped  $Cs_2NaBi_{0.75}Sb_{0.25}Cl_6$  (d) under daylight (upper) and 365 nm UV light (bottom). The input mole ratio of  $Mn^{2+}/Na+$  in  $Mn^{2+}$  doped crystals is 0.2.



**Fig. S16.** (a) Photoluminescence excitation spectra (PLE) of  $Cs_2NaBi_{1-x}Sb_xCl_6$  monitored at 480 nm excepting  $Cs_2NaBiCl_6$  (at 700 nm). (b) The comparison of the PLE curves for  $Cs_2NaBiCl_6$  and  $Cs_2NaSbCl_6$ .



**Fig. S17.** Emission-wavelength-dependent PLE (a-c) and excitation-wavelength-dependent PL (d-f) spectra of  $Cs_2NaBiCl_6$  (a, d),  $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$  (b, e), and  $Cs_2NaBi_{0.75}Sb_{0.25}Cl_6$  (c, f).



**Fig. S18.** PL spectra for  $Mn^{2+}$  doped  $Cs_2NaBi_{1-x}Sb_xCl_6$  (x = 0, 0.05 and 0.25) with emission peaks centered at 590 nm (a), and 480 nm with amplifying intensity (b). The input mole ratio of  $Mn^{2+}/Na+$  in samples is 0.2 or 0.01.

| aamnlaa                                                                                  | Mass C | oncentration (m | Molar Ratio |       |       |
|------------------------------------------------------------------------------------------|--------|-----------------|-------------|-------|-------|
| samples                                                                                  | Na     | Bi              | Sb          | Bi/Na | Sb/Na |
| Cs <sub>2</sub> NaBiCl <sub>6</sub>                                                      | 13.98  | 119.69          |             | 0.94  |       |
| $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$                                                           | 15.27  | 138.61          | 2.29        | 0.998 | 0.03  |
| Cs2NaBi0.9Sb0.1Cl6                                                                       | 15.03  | 273.37          | 8.86        | 0.86  | 0.05  |
| Cs <sub>2</sub> NaBi <sub>0.75</sub> Sb <sub>0.25</sub> Cl <sub>6</sub>                  | 34.92  | 97.44           | 8.66        | 0.71  | 0.11  |
| Cs2NaBi0.7Sb0.3Cl6                                                                       | 6.36   | 54.97           | 11.23       | 0.95  | 0.33  |
| Cs2NaBi0.5Sb0.5Cl6                                                                       | 1.68   | 28.51           | 26.10       | 1.87  | 2.93  |
| Cs <sub>2</sub> NaSbCl <sub>6</sub>                                                      | 1.11   |                 | 65.09       |       | 11.06 |
| Cs <sub>2</sub> NaBiSb <sub>0.05</sub> Cl <sub>6</sub><br>(with 20 ml HNO <sub>3</sub> ) | 15.14  | 151.22          | 2.98        | 1.11  | 0.04  |

Table S1 Elemental analysis of Cs<sub>2</sub>NaBi<sub>1-x</sub>Sb<sub>x</sub>Cl<sub>6</sub> measured by ICP-OES.

Table S2 Carrier lifetime derived from the decay curves of PL by fitting with bi-exponentials.

| Wavelength | sample                                                                  | $\tau_1/ns$ | $A_1$ | $\tau_2/ns$ | A <sub>2</sub> | Average τ/ns |
|------------|-------------------------------------------------------------------------|-------------|-------|-------------|----------------|--------------|
| 700 nm     | Cs <sub>2</sub> NaBiCl <sub>6</sub>                                     | 1.82        | 0.54  | 5.69        | 0.43           | 3.54         |
|            | $Cs_2NaBi_{0.95}Sb_{0.05}Cl_6$                                          | 1.97        | 1.03  | 12.13       | 0.07           | 2.62         |
| 480 nm     | Cs <sub>2</sub> NaBi <sub>0.95</sub> Sb <sub>0.05</sub> Cl <sub>6</sub> | 2.67        | 0.85  | 14.06       | 0.15           | 4.38         |
|            | Cs <sub>2</sub> NaBi <sub>0.75</sub> Sb <sub>0.25</sub> Cl <sub>6</sub> | 2.21        | 1.08  | 14.58       | 0.04           | 2.60         |

Average  $\tau$  is calculated according to the equation: Average  $\tau = (A_1\tau_1 + A_2\tau_2)/(A_1 + A_2)$