Unravelling the effect of fluorinated ligands in hybrid EUV photoresists by X-ray spectroscopy

Lianjia Wu,^{*a*} Ivan Bespalov,^{*a*} Katharina Witte,^{*b*} Olivier Lugier,^{*a*} Jarich Haitjema,^{*a*} Michaela Vockenhuber,^{*b*} Yasin Ekinci,^{*b*} Benjamin Watts,^{*b*} Albert M. Brouwer,^{*ac*} and Sonia Castellanos^{**a*}

^a Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, the Netherlands. E-mail: s.castellanos@arcnl.nl

^b Paul Scherrer Institute, Forschungstrasse 111, Villigen 5232, Switzerland.

^c van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.

Supporting Information

Figure S1 Fourier transform infrared (FTIR) spectra of **ZrMc** (in grey) and **ZrMcF** (in black) thin films, offset for clarity. The absorption band at 1100–1200 cm⁻¹ (asterisk) with peaks at 1118, 1149 and 1167 cm⁻¹ is assigned to C-F stretching from the trifluoromethacrylate ligand in the molecule.

Figure S2 Selected SEM pictures of dense lines patterns printed with EUV interference lithography on **ZrMc** and **ZrMcF** (HP = half-pitch).

Figure S3 Fitted C K-edge NEXAFS spectra of areas on ZrMc and ZrMcF exposed to EUV.

Figure S4 C K-edge NEXAFS spectra of a) **ZrMc** and b) **ZrMcF** before and after exposure normalized to the continuum and extended to photon energies where the peaks of the Zr $M_{2,3}$ -edge (333.8 eV and 346.5 eV) are observed.

Figure S5 Comparison of the C K-edge spectrum of PMMA with the spectra of **ZrMc** and **ZrMcF** after exposure to the highest EUV dose (500 mJ/cm²).

Figure S6 Added absorbance values of the fitted peaks in the normalised spectra associated to C 1s $\rightarrow \pi^*$ (C=O) electronic transition ($A_{286.9} + A_{287.9}$) relative to the absorbance values in the unexposed sample (A/A_0).

Figure S7 (Replotted from Fig. 4.) Evolution of the absorbance value (*A*) of some fitted peaks in normalized spectra as a function of estimated absorbed dose, where the absorbed dose = incident dose * (100% - T) and T = exp (- α *d). **a**) Absorbance of peaks assigned to C 1s $\rightarrow \pi^*$ (C=C) ($A_{283.6} + A_{284.2}$) relative to initial values (A/A_0); **b**) Absorbance ratio between peaks assigned to C 1s $\rightarrow \pi^*$ (C=C) ($A_{283.6} + A_{284.2}$) and to C 1s $\rightarrow \pi^*$ (C=O) ($A_{286.9} + A_{287.9}$).

Figure S8 High-resolution XPS spectra of the O 1s and C 1s peaks of the unexposed and the exposed ZrMcF resist.

Figure S9 Elemental ratio recorded with XPS of **ZrMcF** thin films before and after exposure to different doses of EUV light.