Efficient Microwave Traps with Markedly Enhanced Interfacial Polarization and Impedance Matching Enabled by Dual-Shelled, Dual-Cavity Magnetic@Dielectric Hollow Nanospheres

Jiasong Hua, Wenjun Ma, Xiaoyun Liu, Qixin Zhuang,* Zeyang Wu, Huang Huang, and Shaoliang Lin*

J. Hua, W. Ma, Prof. X. Liu, Prof. Q. Zhuang, Z Wu, H. Huang, Prof. S. Lin The Key Laboratory of Advanced Polymer Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

E-mail: <u>qxzhuang@ecust.edu.cn</u> (Q.Z.) and <u>slin@ecust.edu.cn</u> (S.L.)

Figures and Figure Captions

Figure S1. Selected-area electron diffraction (SAED) pattern of Fe₃O₄ hollow spheres (i.e., Fe₃O₄-HNs).

Figure S2. HRTEM image of the outer TiO_2 shell on a single dual-shelled $Fe_3O_4@TiO_2$ hollow nanosphere (i.e., DS-Fe₃O₄@TiO₂-HN).

Figure S3. (a) TEM and (b-d) energy-dispersive X-ray spectroscopy (EDX) elemental mappings of a single Fe_3O_4 hollow sphere (i.e., Fe_3O_4 -HN): (b) Fe, (c) O, and (d) combined.

Figure S4. (a) TEM and (b) EDX elemental mapping of a single $Fe_3O_4@SiO_2$ hollow nanosphere (i.e., $Fe_3O_4@SiO_2$ -HN): (b) Fe, (c) O, (d) Si, and (e) combined.

Figure S5. (a) TEM and (b) EDX elemental mapping of a single $Fe_3O_4@SiO_2@TiO_2$ hollow nanosphere (i.e., $Fe_3O_4@SiO_2@TiO_2$ -HN): (b) Fe, (c) O, (d) Si, (e) Ti, and (f) combined.

Figure S6. XRD patterns of (a) Fe_3O_4 hollow spheres (i.e., Fe_3O_4 -HNs) and (b) dual-shelled $Fe_3O_4@TiO_2$ hollow nanospheres (i.e., DS-Fe_3O_4@TiO_2-HNs).

Figure S7. Nitrogen sorption isotherms and corresponding pore size distribution curve (inset) of DS-Fe₃O₄@TiO₂-HNs.

Figure S8. Hysteresis loops of (a) Fe_3O_4 -HNs, (b) Fe_3O_4 @SiO₂-HNs, (c) Fe_3O_4 @SiO₂@TiO₂-HNs, and (d) DS-Fe₃O₄@TiO₂-HNs.

Figure S9. TEM images of (a) Fe_3O_4 -HNs, (b) Fe_3O_4 @SiO₂-HNs-40-20, (c) Fe_3O_4 @SiO₂@TiO₂-HNs-40-20-20, and (d) DS-Fe₃O₄@TiO₂-HNs-40-20-20.

Figure S10. TEM images of (a) Fe_3O_4 -HNs, (b) Fe_3O_4 @SiO₂-HNs-40-20, (c) Fe_3O_4 @SiO₂@TiO₂-HNs-40-20-60, and (d) DS-Fe₃O₄@TiO₂-HNs-40-20-60.

Figure S11. TEM images of (a) Fe_3O_4 -HNs, (b) Fe_3O_4 @SiO₂-HNs-40-40, (c) Fe_3O_4 @SiO₂@TiO₂-HNs-40-40, and (d) DS-Fe₃O₄@TiO₂-HNs-40-40-40.

Figure S12. TEM images of (a) Fe_3O_4 -HNs, (b) Fe_3O_4 @SiO₂-HNs-40-60, (c) Fe_3O_4 @SiO₂@TiO₂-HNs-40-60-40, and (d) DS-Fe_3O_4@TiO₂-HNs-40-60-40.

Figure S13. Dielectric Cole-Cole semicircles of DS-Fe₃O₄@TiO₂-HNs.

Figure S14. Frequency-dependent eddy current loss plot of DS-Fe₃O₄@TiO₂-HNs.

Types of absorber	Thickness	Reflection	Effective	Frequency	Refs.
	(mm)	loss	bandwidth	range	
		minimum,	(<-10 dB)	(< -10 dB)	
		RL_{min} (dB)	(GHz)	(GHz)	
RGO/Fe ₃ O ₄ /Fe	4	-23.09	3.9	7.4-11.3	2 (2016)
Fe ₃ O ₄ /C	2	-20.60	3.8	11.8-15.6	3 (2014)
Fe ₃ O ₄ /CuSilicate	2	-23.50	10.4	3.5-13.9	4 (2013)
CoNi/SiO ₂ /TiO ₂	2.1	-58.20	8.1	8-16.1	1 (2016)
RGO/Fe ₃ O ₄	2	-15.38	2.8	10.4-13.2	5 (2013)
CoFe ₂ O ₄ /RGO	2.8	-57.70	5.8	8.3-14.1	6 (2018)
Carbon/ Fe ₃ O ₄	1.6	-32.00	2	10.5-12.5	7 (2015)
FeCo/C/CoFe ₂ O ₄	6	-25.80	7.2	10.8-18	8 (2016)
DS-Fe ₃ O ₄ @TiO ₂ -HS	s 1.8	-60.17	10.5	7.5-18	This work

Table S1. Summary of microwave absorption properties of the state-of-the-art absorbers

References

- 1. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, *et al.* CoNi@SiO₂@TiO₂ and CoNi@Air@TiO₂ Microspheres with Strong Wideband Microwave Absorption. *Adv. Mater.* **2016**, *28*, 486-490.
- Ding Y, Zhang L, Liao Q, Zhang G, Liu S, Zhang Y. Electromagnetic Wave Absorption in Reduced Graphene Oxide Functionalized with Fe₃O₄/Fe Nanorings. *Nano Res.* 2016, *9*, 2018-2025.
- Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J, *et al.* Shell Thickness-Dependent Microwave Absorption of Core-Shell Fe₃O₄@C Composites. *ACS Appl. Mater. Interfaces* 2014, *6*, 12997-13006.
- 4. Fang J, Liu T, Chen Z, Wang Y, Wei W, Yue X, *et al.* A Wormhole-Like Porous Carbon/Magnetic Particles Composite as an Efficient Broadband Electromagnetic Wave Absorber. *Nanoscale* **2016**, *8*, 8899-8909.
- 5. Sun X, He J, Li G, Tang J, Wang T, Guo Y, *et al.* Laminated Magnetic Graphene with Enhanced Electromagnetic Wave Absorption Properties. *J. Mater. Chem. C* **2013**, *1*, 765-777.
- Liu Y, Chen Z, Zhang Y, Feng R, Chen X, Xiong C, *et al.* Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe₂O₄/Reduced Graphene Oxide Porous Nanocomposites. *ACS Appl. Mater. Interfaces* 2018, 10, 13860-13868.
- Wang J, Zhou H, Zhuang J, Liu Q. Magnetic [Gamma]-Fe₂O₃, Fe₃O₄, and Fe Nanoparticles Confined within Ordered Mesoporous Carbons as Efficient Microwave Absorbers. *Phys. Chem. Chem. Phys.* 2015, 17, 3802-3812.
- Feng Y, Li D, Jiang L, Dai Z, Wang Y, An J, *et al.* Interface Transformation for Enhanced Microwave-Absorption Properties of Core Double-Shell Nanocomposites. *J. Alloys Compd.* 2017, 694, 1224-1231.