Supporting Information

Triethanolamine-assisted photodeposition of non-crystalline Cu_xP nanodots for boosting photocatalytic H₂ evolution of TiO₂

Jiachao Xu^a, Wei Zhong^a, Huogen Yu^{a*}, Xuekun Hong^{b*}, Jiajie Fan^c, and Jiaguo Yu^d

^a Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China

^b School of electronic and information engineering, Changshu Institute of Technology, Changshu 215500, PR China

^c School of Materials Science and Engineering, Zhengzhou university, 100 Science Avenue, Zhengzhou 450002, PR China

^d State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan university of Technology, 122 Luoshi Road, Wuhan 430070, PR China

Tel: 0086-27-87756662, Fax: 0086-27-87879468

E-mail: yuhuogen@whut.edu.cn (H.Yu); xkhong@cslg.edu.cn (X. Hong)

EXPERIMENTAL SECTION

SI-1 Photoelectrochemical measurements

Photoelectrochemical measurements are conducted on electrochemical analyzer (CHI660E, China) with Na₂SO₄ solution (0.5 M) as the electrolyte. The reaction system includes working electrode, Pt counter electrode, and AgCl reference electrode. The light source was provided by one UV light (365 nm, 3 W). The sample-loaded FTO glasses were used as working electrodes. Typically, the sample (10 mg) is uniformly mixed with a solution of absolute ethanol and Nafion D-520 (1:1) by ultrasonic. The obtained suspension was spread on the FTO glass and stored in 60 °C oven for 12 h. The LSV measurement was carried out by a bias range of -0.8 to -1.6 V. In addition, the frequency range was set in a range of 10⁻³-10⁻⁶ Hz to measure the EIS. Transient photocurrent responses with time (*i*-*t* curves) were determined at +0.5 V bias potential during repeated ON/OFF illumination cycles under 3W-LED (365 nm, 80 mW cm⁻²) as light source. Mott–Schottky plots are measured under a frequency of 1000 Hz in 0.5 M Na₂SO₄ aqueous solution.

SI-2 The AQE calculation

The apparent quantum efficiency (AQE) of $Cu_xP/TiO_2(1wt\%)$ photocatalyst is calculated via the following equation:

$$AQE(\%) = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100\%$$
$$= \frac{\text{number of evolved H}_2 \text{ molecules} \times 2}{\text{number of incident photons}} \times 100\%$$

The average power of the UV-light (four 3-W 365 nm) was 17 mW/cm². Hence, the AQE can be calculated to be 7.7 %.

Sample	TiO ₂	CuSO ₄ (0.1 M) ^a	NaH ₂ PO ₂ (0.2 mol/L ⁻¹)	Irradiation time	H ₂ -evolution rate
А		0.317 ml	20 ml	60 min	0 µmol h ⁻¹
В	200 mg		20 ml	60 min	2.8 µmol h ⁻¹
С	200 mg	0.317 ml		60 min	3.1 µmol h ⁻¹
D	200 mg	0.317 ml	20 ml		0 µmol h ⁻¹
Е	200 mg	0.317 ml	20 ml	60 min	93.5 µmol h-1

Table S1 Preparation conditions of contrast experiments

^a the CuSO₄ aqueous solution with the presence of TEOA, where the molar ratio of TEOA to CuSO₄ was about 7:1.

Average lifetime Samples A_1 A_2 $\mathbf{\tau}_1$ $\mathbf{\tau}_2$ (ns) (%) (ns) $(\mathbf{\tau}_{a})$ (ns) (%) TiO₂ 0.18 76.03 2.63 23.97 2.19 Cu_xP-0.2 78.62 2.79 21.38 2.25 ND/TiO₂(1wt%)

Table S2 Fluorescence Emission Lifetime and Relevant Percentage Data Fitted by a

 Three-Exponential Function

The above fitted parameters are acquired via the following tri-exponential formulas:

$$I_{(t)} = I_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3)$$

(1)
$$\tau_{av} = (A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2)/(A_1\tau_1 + A_2\tau_2 + A_3\tau_3)$$

(2) where I_0 is the baseline correction value, A_1 , A_2 and A_3 represent the tri-

exponential factors, and $\tau_1,\,\tau_2,\,\tau_3$ and τ_a corresponding the lifetime in various stages

(radiation, non-radiation and energy transfer) and average lifetime.

Fig. S1 Zeta potentials of TiO_2 before and after $Cu(TEOA)^{2+}$ modification.

Fig. S2 Hydrogen production performance and color change during the photodeposition of $Cu_xP/TiO_2(1wt\%)$.

Fig. S3 FESEM images of (A) TiO_2 and (B) $Cu_xP-ND/TiO_2(1wt\%)$.

Fig. S4 Mott-Schottoy plots of (A) TiO_2 and (B) $Cu_xP-ND/TiO_2(1wt\%)$ in 0.5M Na_2SO_4 solution (pH = 7)

Fig. S5 Schematic illustration of electron transfer path before and after contact of TiO_2 and Cu_xP nanodots.