Deposited structure design of epoxy composites with excellent electromagnetic

interference shielding performance and balanced mechanical properties

Qingsong Lian^a*, Weijie Xu^a, Yan Li^b, Hongfeng Chen^a, Hongji Duan^a, Zhi Wang^{a,c},

Dong An^a, Guizhe Zhao^a, Yaqing Liu^a*

^aCollege of Materials Science and Engineering, Key Laboratory of Functional

Nanocomposites of Shanxi Province, North University of China, Taiyuan 030051,

People's Republic of China

^bDepartment of Materials Application Research, AVIC Manufacturing Technology

Institute, Beijing 100024, China

^cDepartment of Chemistry and the Materials Research Center, Northwestern

University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

* Corresponding author. Tel. /fax: +86 0351 3559669

E-mail address: lianqs@nuc.edu.cn (Qingsong Lian),

lyq@nuc.edu.cn (Yaqing Liu)

1. Electromagnetic Interference (EMI) Shielding Measurements

The physical parameters for evaluating the EMI performance can be calculated based on the scattering parameters (*S*11 and *S*21). The relevant formulas are shown as follows:

 $R = |S11|^{2}$ $T = |S21|^{2}$ A + R + T = 1 $SETotal = -10\log T$ $SER = -10\log (1 - R)$

where A, R and T are the absorption, reflection and transmission coefficients, respectively. SE_{Total}, SE_R, and SE_A are the total, reflective, and absorptive EMI shielding effectiveness, respectively.

Figure S1. SEM images of cold-fractured interface morphologies close to the upper layer of T-ZnO/Ag/EP samples prepared by: (a) ISP method; (b) SB method; (c)(d) MISP method.

System	Conductivity on the bottom surface of sample (S/m)		
EP _{T-5}	5390±74		
EP _{T-10}	12080 ± 180		
EP _{T-15}	18530 ± 698		
EP _{T-20}	31840±1360		

Table S1. Electrical	conductivity	on the bottom	surface o	f EPT x SV	vstems
	conductivity	on the bottom	Surface 0	1 L1 [-X 5]	scoms

Figure S2. SEM images of the EP_{T-X} systems: (a) EP_{T-5} sample; (b) EP_{T-10} sample; (c) EP_{T-15} sample; (d) EP_{T-20} sample.

Figure S3. Strain-stress curves of blank sample and all the EP_{T-X} systems.

Figure S4. Strain-stress curves of T-ZnO/Ag/EP composites (with 20 wt% T-ZnO/Ag content) prepared by different processing method.