Electronic Supplementary Information

Luminescent two-way reversible shape memory polymers prepared by the hydroxylyne click polymerization

Kaojin Wang,^a Han Si,^a Qing Wan,^a Zhiming Wang, Anjun Qin, *^a Ben Zhong Tang*^{a,b}

^{*a*} State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China.

^bDepartment of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China.

Scheme S1. Synthetic routes to dipropiolates and PCL-4OH prepolymers

Table S1. Molecular weights and thermal properties of PCL-4OH prepolymers

$M_{ m n,NMR}{}^{ m a}$	$M_{n,SEC}^{b}$	D^{b}	$T_{\rm c}^{\rm c}(^{\circ}{\rm C})$	$T_{\rm m}^{\rm c}$ (°C)	$\Delta H_{\rm c}^{\rm c} ({\rm J/g})$	$\Delta H_{\rm m}^{\rm c} ({\rm J/g})$
(g/mol)	(g/mol)					
2200	3800	1.45	10.3	35.7 (44.2)	71.6	68.5
3600	5700	1.21	21.5	42.9 (46.8)	77.2	79.1
4500	7100	1.25	20.3	45.8 (50.0)	71.9	76.9
5800	8000	1.29	24.5	48.3	74.9	79.3

^{*a*} Calculated from the ratio of ¹H NMR signal integral; M_n = number-average molecular weight. ^{*b*} Estimated by SEC in THF on the basis of a polystyrene (PS) calibration; D = polydispersity index $(M_w/M_n, M_w =$ weight-average molecular weight). ^{*c*} Measured by DSC. Defined by crystallization (T_c) and melting temperatures (T_m).

Figure S1. ¹H NMR spectrum of dipropiolate **1** in CDCl₃. The solvent peak is marked with an asterisk.

Figure S2. ¹H NMR spectrum of TPE-containing dipropiolate 2 in $CDCl_3$. The solvent peak is marked with an asterisk.

Figure S3. ¹H NMR spectrum of PCL₃₆₀₀-4OH in CDCl₃. The solvent peak is marked with an asterisk.

Figure S4. ¹H NMR spectra of PCL₂₂₀₀-OH (A), PCL₃₆₀₀-OH (B), PCL₄₅₀₀-OH (C), and PCL₅₈₀₀-4OH (D) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S5. 13 C NMR spectrum of dipropiolate 1 in CDCl₃. The solvent peak is marked with an asterisk.

Figure S6. ¹³C NMR spectrum of TPE-containing dipropiolate 2 in CDCl₃. The solvent peak is marked with an asterisk.

Figure S7. ¹³C NMR spectrum of PCL₃₆₀₀-4OH in CDCl₃. The solvent peak is marked with an asterisk.

Figure S8. FT-IR spectra of PCL₂₂₀₀-OH (A), PCL₃₆₀₀-OH (B), PCL₄₅₀₀-OH (C), and PCL₅₈₀₀-4OH (D).

Figure S9. TGA curves of PCL-4OH prepolymers, PCL-based networks, and TPE-containing dipropiolate 2.

Figure S10. DSC heating (A) and cooling (B) curves of PCL-4OH prepolymers.

Figure S11. DSC curves of heating (A) and cooling (B) processess of PCL-based networks.

Figure S12. Chemical structure of the AIEgen with red emission.