Supporting Information

Lattice constriction and trapped excitons: a structure-property relationship unveiled in CsPbBr₃ QDs

Vishaka V Halali, Jesna K George, Altaf Pasha, Sarina K, R Geetha Balakrishna*

Centre for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India

Corresponding Author*: br.geetha@jainuniversity.ac.in

1. Materials and Methods

Lead (II) Bromide (PbBr₂, 99%), cesium carbonate (Cs₂CO₃, 99.9%), oleic acid (OA, 99%), oleyl amine (OAM, 70%), 1-octadecene (ODE, 90%) and lanthanum (III) bromide (LaBr₃) were purchased from Sigma Aldrich. DI H₂O and all other chemicals were of analytical standards used without purification. For transmission electron microscopy (TEM), the CsPbBr₃ PQD's dropped cast onto copper grids with carbon support by slowly evaporating at room temperature. Transmission Electron Microscope (TEM) image and energy dispersive spectrometer (EDS) spectra were recorded using (Titan Themis 300kV from FEI, now Thermo). Attenuated total reflectance infrared (ATR-IR) spectra were recorded with a Bruker Alpha Eco-ATR spectrometer in the scan range of 4000-500cm⁻¹ for the entire sample. UV-Vis absorption and PL spectra were recorded by Shimadzu UV-1800 spectrophotometer using a 10 mm quartz cuvette and Shimadzu RF 5301PC Spectro fluorophotometer respectively. X-ray diffraction patterns were recorded on an Ultima-IV X-ray diffraction (Rigaku Corporation, Japan) using Ni-filtered Cu Ka radiation with a 20 scan speed of 2.0° min⁻¹ and a 20 scan range of 5-80° at 40KV and 30Ma. X-ray photoelectron spectra were recorded using multi-technique X-ray photoelectron spectroscopy with XPS-mapping capability AXIS ULTRA 165. Time Resolved Fluorescence Spectrometer (TRPL), Horiba Jobin Yuvon Fluorocube-01-NL Fluorescence Life time System determined the fluorescence life Time.

2. Synthesis of CsPbBr₃ perovskite QDs

All- Inorganics CsPbBr₃ perovskite QD's were synthesized through the hot-injection method by the following steps as reported in our previous literature [1].

3. Preparation of La³⁺ metal ion solution

The stock solution (3 μ M) was prepared by dissolving 0.1 mM of Lanthanum bromide in 0.5 ml ethyl acetate followed by ultrasonic treatment for 10 min to obtain a transparent solution. It was then made upto 10mL.

4. Doping of La³⁺ into CsPbBr3

The synthesized CsPbBr₃ perovskite QDs (0.3 mg) dispersed in 2 ml toluene were mixed with 2μ L of 0.4 μ M lanthanum ions (in toluene) and made up to 5 mL. The mixture was then loaded into the cuvette and characterized after shaking for 60 seconds to ensure complete reaction between the perovskite QDs and the enhancer (La³⁺ ions).

Fig. S1(a) Absorption and emission spectra of CsPbBr₃ perovskite QDs dispersed in toluene; (b) HRTEM image inset: particle size distribution, SAED pattern

The CsPbBr₃ perovskite QDs were synthesized in the presence of OAM and OA as co-solvent via previously reported procedure. From Fig. S1(a) it could be seen that CsPbBr₃ PQDs have an obvious absorption peak at 508 nm and an intense emission peak at 518 nm. By varying the excitation wavelength from 370 to 460 nm, there is no change in the emission wavelength and PL intensity of CsPbBr₃ perovskite QDs, an indication of their independence property of emission wavelength on the excitation energy (Fig. S1(a)). Transmission electron microscopy (TEM) image of the as-prepared CsPbBr₃ perovskite QDs was measured in Fig. S1(b) from which it could be seen that the CsPbBr₃ perovskite QDs arranged orderly without any aggregation presented a cubic phase with a uniform average edge. The high-resolution TEM (HRTEM) image in inset of Fig. S1(b) reveals the well-resolved lattice fringes with the interplanar distance about 3.89 Å, which coincides with the (110) plane and demonstrates the high crystalline nature of the QDs. Inset of Fig. S1(b) also show cube shaped particles with an average particle size of 16 -19 nm. In our study, the XRD pattern of the CsPbBr₃ QDs in Fig. S2 indicates the perovskite phase of CsPbBr₃ (*JCPDS* No. 96-153-3063). The Cs: Pb: Br atom ratio of the CsPbBr₃ PQDs measured by the energy-dispersive spectrometer (EDS) is consistent with the stoichiometry of 1:1:3 Fig. S4.

Fig. S2 XRD reitveld refinement graphs of CsPbBr₃ perovskite QDs and CsPbBr₃-La³⁺ perovskite QDs

Fig S3 High-resolution XPS spectra corresponding to Cs 3d and Br 3d of CsPbBr₃ and CsPbBr₃-La³⁺ perovskite QDs

CsPbBr₃ perovskite QDs

Lsec: 47.7 90 Cnts 1.020 keV Det: Element-C2B

Fig. S4 EDS spectrum and Quantification of elemental composition in CsPbBr₃ and CsPbBr₃-La³⁺ perovskite QDs.

Fig. S5 Elemental mapping of Cs, Pb, Br and La ions

(a) CsPbBr₃ perovskite QDs

	- Particle Si	- Measurement Info	- Measurement Information -			
-	Summary			Title		
D	ata Value	Percen	tiles	Particle Size Anal	Particle Size Analysis	
141		%Tile S	Size(nm)	Identifiers	Identifiers	
IVI V	(nm): 4,990	10.00	38.90	1	1	
MIN	(nm): 52.10	20.00	40.90	1	1	
MA	(nm): 2,265	30.00	43.10	Database Record	52	
	CS: 2.649	40.00	45.40	Run Number	1 of 1	
	SD: 11.02	50.00	47.90	Date	05-07-2019	
	PDI: 623.7	60.00	50.70	Time	10:11	
	Mz: 4,922	70.00	54.40	Acquired Date	05-07-2019	
	si: 1,509	80.00	59.50	Acquired Time	10:11	
	Ski: -678.61727	90.00	67.70	Serial Number	W3231	
	Kg: 979.4 95.00 75.70			Calculated Dat	Calculated Data	
1	1.9.1 070.1			Above Residual	0	
				Below Residual	0	
				Loading Index	0.846	
				Conc. Index	0.2701	
				RMS Residual	0.033%	
				Cell Temp (C)	28.97	
	Poske S	Viscosity(cp)	0.5320			
	Dia(nm) V(Width	-	Reflected Pwr (uW)	1.02	
-		00 00 00	_	Recalculation Sta	atus	
	47.9	00 22.04	Live-Meas : : Original :			

(b) CsPbBr₃-La³⁺ perovskite QDs

Summary		Perc	entiles	Title	Title		
Data	Value	%Tile	Size(nm)	Particle Size Ana	Particle Size Analysis		
MV(nm):	2,235	10.00	434.0	Identifiers	Identifiers		
MN(nm):	833.0	20.00	472.0	2	2		
MA(nm):	1.625	30.00	506.0	2			
CS	3.69	40.00	540.0	Database Record	53		
SD:	511.0	50.00	579.0	Run Number	1 of 1		
50.	0.10	50.00	578.0	Date	05-07-201		
PDI:	3.10	50.00	038.0	Time	10:34		
Mz:	2,052	70.00	1005	Acquired Date	05-07-201		
si:	1,207	80.00	1305	Acquired Time	10:34		
Ski:	522.8	90.00	1649	Serial Number	W3231		
Kg:	2,881	95.00	1847	Calculated Da	Calculated Data		
				Above Residual	0		
				Below Residual	0		
				Loading Index	0.254		
				Conc. Index	0.02051		
				RMS Residual	0.185%		
-				Cell Temp (C)	28.79		
Peaks Summary				Viscosity(cp)	0.5330		
Dia(nr	n) Vol%	Widt	h	Reflected Pwr (uW)	.93		
1,576	6 24.9	573) (Recalculation St	tatus		
531	75.1	221.	5	Live-Meas : : Orig	Live-Meas : : Original :		

Fig. S6 DLS and Zeta potential values of CsPbBr₃ perovskite QDs and CsPbBr₃-La³⁺ perovskite QDs

Fig. S7 Stability measurement by tracking changes in PL intensity

References

 Liu, Y., Tang, X., Zhu, T., Deng, M., Ikechukwu, I. P., Huang, W., ... Qiu, F. (2018). All-inorganic CsPbBr3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu2+ detection. Journal of Materials Chemistry C, 6(17), 4793–4799. doi:10.1039/c8tc00249e.