Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Controllable Magnetism Driven by Carrier Confinement and Ferroelectric Polarization in a Two-Dimensional Heterostructure

Ziye Zhu^{1,2}, Xiaofang Chen¹, Wenbin Li^{2*} and Jingshan Qi^{1*}

¹School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, People's Republic of China

² Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang

Province, School of Engineering, Westlake University, Hangzhou 310024, People's

Republic of China

Corresponding Authors

*liwenbin@westlake.edu.cn; qijingshan@jsnu.edu.cn

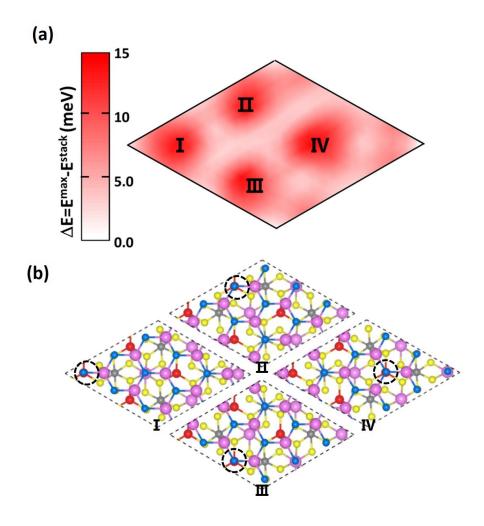
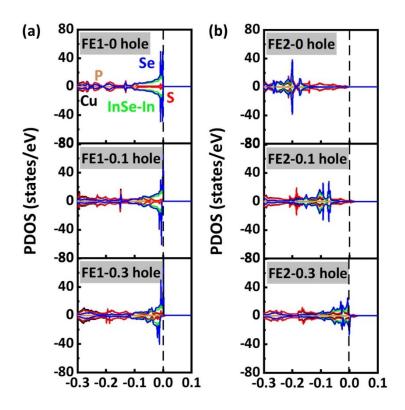



Figure S1. (a) Total energy as a function of interlayer translation for $CuInP_2S_6/InSe$.

(b)The most stable four equivalent configurations.

Figure S2. Projected density of states (PDOS) for FE1 (a) and FE2 (b) phases of $CuInP_2S_6/InSe$ at the doping concentration 0, 0.1 and 0.3 hole per cell. The Fermi level is set to zero.