Supporting Information for

Fork-shaped Paper SERS Sensor Coated with Raspberry-like Bimetal Nanospheres for Boosted Mixture Detection: Experimental Design and Application

Yuanyuan Xu¹, Xingguo Gao¹, Cheng Yang², Baoyuan Man^{2*}, Jiancai

Leng^{1*}

- 1. School of Science, Qilu University of Technology (Shandong Academy of Scienc es), Jinan 250353, People's Republic of China.
- 2. School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China.

Fig. S1. High resolution TEM images of raspberry-like bimetal Au@AgNPs.

Fig. S2. SEM images of AgNPs/paper substrates obtained by growth solution of different concentration (a) 0.04M and (c) 0.01M. (b) SEM images of AgNPs/paper (Fig. S2a) after exposing to the HAuCl₄ solution.

Fig. S3. The Raman spectra of 10⁻⁷ M CV on different AgNPs/paper substrates.

Fig. S4. (a) SERS signals of CV molecules at 10⁻⁸ M from 6 different batches paper substrates. (b) Intensity distribution of the peak at 914 cm⁻¹.

Fig. S5. Model of Raspberry-like bimetal Au@AgNP used in the COMSOL software according to its SEM images.

1-1

Fig. S6. The electric field distribution on the AgNP.

Fig. S7. Optical photos of both paper substrates after immersing in aqueous H_2O_2 for different time.

substrates comonica paper emenancegraphy.			
Substrates	Analytes	LOD	Reference
Ag@SiO ₂ paper	R6G and malachite green	0.5 mM and 0.5 mM	Ref. 1
Ag nanoislands/paper	CR,TB and CV	50 mM, 40 mM and 5 mM	Ref. 2
AuNP/MoS ₂ /filter paper	CV and TB	10 ⁻⁸ M and 10 ⁻⁸ M	Ref. 3
AgNPs/paper	R6G, methylene blue and malachite green	1 mM, 1 mM and 1 mM	Ref. 4
AgNPs /filter paper	R6G, CR, CV and MO	4×10^{-4} M, 4×10^{-4} M, 4×10^{-4} M and 4×10^{-4} M	Ref. 5
ZnO/AgNPs/paper	Dimethoate and thiuram	54.57 μg/L and 19.16 μg/L	Ref. 6
Raspberry-like bimetal Au@AgNPs/paper	CV and fluorescein	10 ⁻⁹ M and 10 ⁻⁹ M	This work

Table S1. The limit of detections for different mixtures reached in the SERS paper substrates combined paper chromatography.

References:

1. K. Zhang, J. Qing, H. Gao, J. Ji, B. Liu, Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components onsite analysis, Talanta, 2017, 162, 52-56.

2. H. Jung, M. Park, M. Kang, K.-H. Jeong, Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules, Light: Science & Applications, 2016, 5, e16009.

3. Y. Zhao, X. Pan, L. Zhang, Y. Xu, C. Li, J. Wang, J. Ou, X. Xiu, B. Man, C. Yang, Dense AuNP/MoS2 hybrid fabrication on fiber membranes for molecule separation and SERS detection, RSC Advances, 2017, 7, 36516-36524.

4. W.W. Yu, I.M. White, Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates, Analyst, 2013, 138, 3679-3686.

5. J.D. Weatherston, R.K.O. Seguban, D. Hunt, H.-J. Wu, Low-Cost and Simple Fabrication of Nanoplasmonic Paper for Coupled Chromatography Separation and Surface Enhanced Raman Detection, ACS Sensors, 2018, 3, 852-857.

6. X. Jin, P. Guo, P. Guan, S. Wang, Y. Lei, G. Wang, The fabrication of paper separation channel based SERS substrate and its recyclable separation and detection of pesticides, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118561.