Electronic Supplementary Information

Chalcogen-vacancy group VI transition metal dichalcogenide

nanosheets for electrochemical and photoelectrochemical hydrogen

evolution

In Hye Kwak,[†] Ik Seon Kwon,[†] Jong Hyun Lee, Young Rok Lim, and Jeunghee Park*

Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea

*To whom correspondence should be addressed; E-mail: parkjh@korea.ac.kr

I.H.K. and I.S.K. contribute equally as first author.

Contents

Experimental Section

Table. S1 Previous works for Si-based PEC cells for hydrogen evolution.

Fig. S1 SEM, EDX, and XRD data of MoO₃ and WO₃.

Fig. S2 XRD data of all samples.

- Fig. S3 HAADF STEM and EDX data of Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂.
- Fig. S4 SEM/EDX data and composition of Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂.

Fig. S5 XPS data of Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂.

Fig. S6 SEM images of MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets

Fig. S7 SEM/EDX data and composition of MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets

Fig. S8 ESR data of MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets

Fig. S9 XPS data of MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets.

Fig. S10 XRD, XPS, STEM and EDX of the samples after PEC 3 h test.

Fig. S11 EIS data of Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂.

Fig. S12 Mott-Schottky plot of Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂.

Fig. S13 EIS data of free-standing MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets.

Fig. S14 Double-layer capacitance of MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets.

References

Experimental Section

(1) Characterization.

The products were characterized by field-emission transmission electron microscopy (FE TEM, FEI TECNAI G2 200 kV, Jeol JEM 2100F, HVEM). Energy-dispersive X-ray fluorescence spectroscopy (EDX) with elemental maps was measured using a TEM (FEI Talos F200X) operated at 200 kV that equipped with high-brightness Schottky field emission electron source (X-FEG) and Super-X EDS detector system (Bruker Super-X). This EDX has powerful sensitivity and resolution in the low photon energy region. Fast Fourier-transform (FFT) images were generated by the inversion of the TEM images using Digital Micrograph GMS1.4 software (Gatan Inc.).

High-resolution X-ray diffraction (XRD) patterns were obtained using the 9B and 3D beamlines of the Pohang Light Source (PLS) with monochromatic radiation ($\lambda = 1.54595$ Å). XRD pattern measurements were also carried out in a Rigaku D/MAX-2500 V/PC using Cu K_a radiation ($\lambda = 1.54056$ Å). X-ray photoelectron spectroscopy (XPS) measurements were performed using the 8A1 and 10A2 beam lines of the PLS, as well as a laboratory-based spectrometer (Thermo Scientific Theta Probe) using a photon energy of 1486.6 eV (Al Ka). Electron spin resonance (ESR) measurements were performed on a Bruker EMX-Plus spectrometer at room temperature. The samples (10 mg) were loaded in a quartz tube. The microwave frequency was 9.644564 GHz, and the microwave power was fixed to 20 mW to avoid saturation.

(2) Water-splitting PEC cell

The backside of NW substrate was connected to a copper (Cu) wire (diameter = 1 mm) using Ga/In eutectic alloy (\geq 99.99%, Sigma-Aldrich) and conductive silver paste (resistivity = < 50

 $\mu\Omega$ ·cm, Dotite D-500, Fujikura Kasei Co.), and then covered with epoxy glue (Hysol 1C, Loctite). The exposed area of the front side was usually 0.25 cm². The PEC cells with a three-electrode system was characterized using an electrochemical analyzer (CompactStat, Ivium Technologies). A 450 W Xe lamp (EUROSEP Instruments) was used with an AM1.5G filter, and the light intensity (100 mW cm⁻²) was calibrated using a Si solar cell (Abet Technologies, Model 15150 Reference Cell).

The Si NW electrodes were used as photocathode in 0.5 M H₂SO₄ electrolyte (pH 0). A saturated calomel electrode (SCE, saturated KCl, Basi Model RE-2BP) was used as the reference electrode, and a Pt wire (0.5 mm dia., Pine Instrument) was used as the counter electrode. The potentials were referenced to the RHE. +The hydrogen (H₂) and oxygen (O₂) gas evolution in the PEC cells was monitored using gas chromatography (GC, Young Lin ACME 6100). The electrolyte was purged with helium gas (\geq 99.999%). A pulsed discharge detector (VICI, Valco Instruments Co., Inc.) and a GC column (SUPELCO Molecular Sieve 13X) were used. The quantities of H₂ and O₂ were calibrated using standard H₂/He and O₂/He mixtures, respectively. Faradaic efficiency (FE) for H₂/O₂ generation was calculated using the

equations:
$$FE(H_2) = \frac{2 \times N_{H_2} \times 96485}{Q}$$
 and : $FE(O_2) = \frac{4 \times N_{O_2} \times 96485}{Q}$ where N_{H_2} or

 N_{O2} is the amounts (in mol) of H₂ or O₂, and *Q* is the generated charge (= photocurrent × time) in Coulomb.

(3) Electrochemical Measurements

Experiments were carried in a three-electrode cell connected to an electrochemical analyzer (CompactStat, Ivium Technologies). HER electrocatalysis (in 0.5 M H₂SO₄ electrolyte) was measured using a linear sweeping from 0 to -0.6 V (*vs.* RHE) with a scan rate of 2 mV s⁻¹. A saturated calomel electrode (SCE, KCl saturated, Pine Instrument) was used as a reference electrode, and a graphite rod (6 mm dia. \times 102 mm long, 99.9995%, Pine Instrument) was used as a counter electrode. The electrolyte was purged with H₂ (ultrahigh grade purity 99.999%) during the measurement.

Fig. E1 CV curves for the potential of reference electrode (SCE), obtained at a scan rate of 2 mV s⁻¹, in the high-purity H₂ saturated 0.5 M H₂SO₄ electrolyte with a Pt wire as the working electrode.

The applied potentials (E) reported in our work were referenced to the reversible hydrogen electrode (RHE) through standard calibration. As a first step, we calibrate the potential of SCE *vs.* standard hydrogen electrode (SHE). Cyclic voltammetry (CV) curves were obtained at a scan rate of 2 mV s⁻¹, in the high-purity H₂ saturated 0.5 M H₂SO₄ electrolyte with a Pt wire as

the working electrode, as shown in **Fig. E1**. The average value of the potential at which the current crossed at zero was -0.278 V. Therefore $E_{SCE} = 0.278$ V, since E (= 0 vs. SHE) - $E_{SCE} = -0.278$ V.

In 0.5 M H₂SO₄ electrolyte (pH 0), E (*vs.* RHE) = E (*vs.* SCE) + E_{SCE} (= 0.278 V) + 0.0592 pH = E (*vs.* SCE) + 0.278 V. The overpotential (η) was defined as E (*vs.* RHE). 4 mg TMD nanosheet sample was mixed with 1 mg carbon black (Vulcan XC-72) dispersed in Nafion (20 μ L) and isopropyl alcohol (0.98 mL). The catalyst materials (0.39 mg cm⁻²) were deposited on a glassy carbon rotating disk electrode (RDE, area = 0.1641 cm², Pine Instrument), and a rotation speed of 1600 rpm was used for the linear sweep voltammetry (LSV) measurements. The Pt/C (20 wt.% Pt in Vulcan carbon black, Sigma-Aldrich) tested as reference sample using the same procedure. The LSV curve of each sample was obtained by averaging first 8-10 scans. For chronoamperometric stability test, we fabricated the electrode by depositing the samples (1 mg cm⁻²) on 1 × 1 cm² area of hydrophilic/water proof carbon cloth (WIZMAC Co., thickness = 0.35 mm, through-plane resistance = 1 mΩ) that was cut with a size of 1 × 3 cm².

Electrochemical impedance spectroscopy (EIS) measurements were carried out for the electrode in an electrolyte by applying an AC voltage of 10 mV in the frequency range of 100 kHz to 0.1 Hz at a bias voltage of -0.1 V (*vs.* RHE). To measure double-layer capacitance *via* CV, a potential range in which no apparent Faradaic processes occur was determined from static CV. This range is 0.1–0.2 V. All measured current in this non-Faradaic potential region

is assumed to be due to double-layer capacitance. The charging current, i_c , is then measured from CVs at multiple scan rates. The working electrode was held at each potential vertex for 10 s before beginning the next sweep. The charging current density (i_c) is equal to the product of the scan rate (v) and the electrochemical double-layer capacitance (C_{dl}), as given by equation $i_c = v C_{dl}$. The difference ($\Delta J_{0.15}$) between the anodic charging and cathodic discharging currents measured at 0.15 V (vs. RHE) was used for i_c . Thus, a plot of $\Delta J_{0.15}$ as a function of v yields a straight line with a slope equal to $2 \times C_{dl}$. The scan rates were 100–200 mV s⁻¹.

Fig. E2 (a) CV curves of TMD samples measured at a scan rate of 50 mV s⁻¹, in 0.1 M phosphate buffer solution (pH 7, range = $-0.2 \sim 0.6$ V vs. RHE). (b) Charge integrated from the CV curves of each sample.

The active site density and turnover frequency (TOF) have been estimated as follows. It should be emphasized that since the nature of the active sites of the catalyst is not clearly understood yet and the real surface area for the nanostructured heterogeneous catalyst is hard to accurately determine, the following result is really just an estimation. The active sites are determined by the charge (Q) integrated from the CV curves (**Fig. E2**), which was obtained in 0.1 M phosphate buffer solution (pH 7, Range = $-0.2 \sim 0.6$ V vs. RHE). While it is difficult to assign the observed peaks to a given redox couple, the integrated charge over the whole potential range should be proportional to the total number of active sites. The formula employed

to find the number of electrochemically active sites (*m*) is given by $m = \frac{Q}{2e}$, where Q is charge in Coulomb and the factor $\frac{1}{2}$ is number of electrons taking part in oxidation/reduction process.^{S1,S2}

The TOF can be caculated from the total number of hydrogen gas (H₂) molecules (n_{H2}) turns overs at a required potential as follows. TOF = $n_{H2}/m = J$ (mA cm⁻²) × 3.12 × 10¹⁵ (H₂ s⁻¹ per mA cm⁻²) × electrode area (= 0.1641 cm²)/m, where n_{H2} was calculated from the current density (J) according to $n_{H2} = J$ (mA cm⁻²)/1000 mA × 1 (C s⁻¹) × 1 mol e⁻/96486 C × 1 mol H₂/2 mol e⁻ × 6.022 × 10²³ H₂ molecules/1 mol H₂ × electrode area = J (mA cm⁻²) × 3.12 × 10¹⁵ (H₂ s⁻¹) × electrode area (= 0.1641 cm²). We summarized the results in **Table E**.

Samples	J (mA cm ⁻²) at 0.2 V	<i>n</i> _{H2}	Q (mC)	т	TOF ($H_2 s^{-1}$)
MoS ₂	14.72	7.53×10^{15}	1.07	3.33×10^{15}	2.25
MoSe ₂	25.42	1.30×10^{16}	0.95	2.96×10^{15}	4.39
WS_2	42.02	2.15×10^{16}	1.33	4.15×10^{15}	5.18
WSe ₂	9.46	4.84×10^{15}	0.85	2.65×10^{15}	1.82

Table E. TOF of samples at $\eta = 0.2$ V, calculated using the density of surface active (*m*).

Year	Ref. No. ^a	Materials (Electrolyte)	V _{OC} (V vs. RHE) ^b	J _{SC} (mA/cm ²) ^c	J_{max} (mA/cm ²) ^d
2011	S3 [11]	Mo ₃ S ₄ /Si pillars (1.0 M HClO ₄)	0.15	8	14 at -0.6 V
2012	S4 [25]	Si-NW@MoS ₂ (1.0 M Na ₂ SO ₄)	0.1	1	10 at -0.4 V
2014	S5 [26]	1T-MoS ₂ /Si (0.5 M H ₂ SO ₄)	0.25	17.6	26.7 at -0.4 V
2015	S6 [17]	MoS _x Cl _y /Si Micropyramid (0.5 M H ₂ SO ₄)	0.41	43.0	44 at -0.1 V
2013	S7 [27]	MoS ₂ /TiO ₂ /n ⁺ p-Si NWs (0.5 M H ₂ SO ₄)	0.3	15	25 at -0.37 V
2016	S8 [28]	MoS ₂ /p-Si (0.5 M H ₂ SO ₄)	0.17	24.6	40 at -1.0 V
	S9 [29]	Co-doped MoS ₂ /p-Si Microwire (0.5 M H ₂ SO ₄)	0.192	17.2	30 at -0.2 V
	S10 [30]	MoS ₂ /Si-NW (0.5 M H ₂ SO ₄)	0.25	14.3	16.5 at -0.7 V
2017	S11 [31]	ALD MoS ₂ /Si (0.5 M H ₂ SO ₄)	0.23	21.7	31 at -0.2 V
	S12 [32]	MoS ₂ /Al ₂ O ₃ /n ⁺ p-Si (1 M HClO ₄)	0.4	34	35.6 at -0.4 V
S13 [33]		Si-MoS ₂ (0.5 M H ₂ SO ₄)	0.31	14	15.3 at -0.3 V
	S14	p-Si/SiO _x /1T-2H MoS ₂ (0.5 M H ₂ SO ₄)	0.35	~30	30 at -0.5 V
	S15 [34]	MoSe ₂ /n ⁺ p-Si (1 M HClO ₄)	0.4	29.3	30.7 at -1.0 V
2018	S16	3D MoS ₂ /TiO ₂ /p-Si (0.5 M H ₂ SO ₄)	0.35	28	36 at -1.2 V
	S17	Ag@Si/MoS ₂ (0.5 M H ₂ SO ₄)	0.17	~5	33.4 at -0.4 V
	S18 [35]	Co-W-S/n ⁺ p-S (1.0 M HClO ₄)	0.32	30.1	36 at -0.6 V
	S19 [36]	Si/GaP–TiO ₂ –MoS ₂ (1.0 M HClO ₄)	0.46	0.95	1 at -0.8 V
2019	S20 [37]	MoS ₂ /WS ₂ /WSe ₂ /p-Si (0.5 M H ₂ SO ₄)	0.14	11.54	35 at -1.0 V
	S21 [38]	WS ₂ /p-Si (0.5 M H ₂ SO ₄)	0.1	9.8	36 at -0.4V
2020	S22 [39]	MoS ₂ /Ni ₃ S ₂ /Si (1 M KOH)	0.54	41.5	41.5 at 0 V
	Our work	MoS ₂ -Si NW (0.5 M H ₂ SO ₄)	0.2	30	32 at -0.2V

Table S1. Comparison of the performance of solar water-splitting PEC cells using Si-TMD based cathode.

^{*a*} The number in bracket is the reference number in the main text.; ^{*b*} J_{SC} : short circuit current (current density at 0 V vs. RHE); ^{*c*} V_{OC} : open circuit voltage; ^{*d*} maximum current density.

Fig. S1 (a) SEM and HRTEM images, (b) EDX spectrum, (c) XRD pattern, and (d) XPS data of wire-like MoO₃ and WO₃ nanoparticles.

The SEM and HRTEM images revealed the nanowire morphology with the diameter of 10-20 nm. The EDX spectrum shows the Mo and W composition. The XRD peaks were matched to those of orthorhombic phase MoO₃ (JCPDS No. 35-0609, Pbnm, a = 3.963 Å, b = 13.85 Å, c = 3.696 Å) and hexagonal phase WO₃ (JCPDS No. 85-2459, P6₃/mcm, a = 7.324 Å, c = 7.662 Å). The XPS survey scan and fine-scanned Mo 3*d*, W 4*f*, and O 1s peaks shows the successful synthesis of oxide form. The Mo $3d_{5/2}$ and W $4f_{7/2}$ peaks blueshift significantly from the position of the metal phase peak (Mo⁰ $3d_{5/2}$ at 228.0 eV and W⁰ $4f_{7/2}$ at 31.4 eV), due to the cation form. The O 1*s* peak redshifts from the position of the neutral peak (O⁰ at 532 eV) due to the anion form. A laboratory-based spectrometer was used with a photon energy of 1486.6 eV (Al K α).

Fig. S2 XRD pattern of (a) Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂ NW samples and (a) free-standing MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets. The peaks of the samples were referenced to those of hexagonal phase MoS₂ (JCPDS No. 87-2416, P6₃/mmc, a = 3.160 Å, c = 12.290 Å), MoSe₂ (JCPDS No. 29-0914, P6₃/mmc, a = 3.287 Å, c = 12.925 Å), WS₂ (JCPDS No. 08-0237, P6₃/mmc, a = 3.154 Å, c = 12.362 Å). WSe₂ (JCPDS No. 38-1388, P6₃/mmc, a = 3.285 Å, c = 12.982 Å). Si (311) peak at 56.5° is assigned using the cubic phase Si (JCPDS No. 80-0018, F3m, a = 5.392 Å). The broad peak at $2\theta = 21^{\circ}$ originated from the sample holder that made of quartz. If the amount of the sample was not enough to cover the holder, the holder peak appears.

Fig. S3 HAADF STEM image, EDX elemental mapping of Si, O, Mo (or W), and S (or Se) elements, and corresponding EDX spectrum for (a) Si-MoS₂, (b) Si-MoSe₂, (c) Si-WS₂, and (d) Si-WSe₂. Two sets of EDX elemental mapping correspond to the whole NW (top) and the magnified region for the Si-TMD interface (bottom). The [S]/[Mo] = 2.0 for MoS₂, [Se]/[Mo] = 1.91 for MoSe₂, [S]/[W] = 1.85 for WS₂, and [Se]/[W] = 1.68 for WSe₂.

Fig. S4 (a) SEM EDX data of the samples. (b) [X]/[M] ratio of MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets and corresponding bulk powders. In the EDX spectrum, Mo L shell and S K shell peaks are overlapped so that the [S]/[Mo] is inaccurate. Therefore, we used only XPS data to obtain the ratio for MoS₂. SEM EDX and XPS data shows that the average value of MoS₂, MoSe₂, WS₂, and WSe₂ is [S]/[Mo] = 1.85, [Se]/[Mo] = 1.92, [S]/[W] = 1.90, and [Se]/[W] = 1.81, respectively.

Fig. S5 Fine-scanned XPS data of Mo 3*d*, W 4*f*, S 2*p*, Se 3*d*, and Si 2*p* peaks of bulk powders and Si-TMD samples. The data points (open circles) are fitted by Voigt functions. The position of the metal phase peak (Mo⁰ 3*d*_{5/2} at 228.0 eV, W⁰ 4*f*_{7/2} at 31.4 eV, S⁰ 2*p*_{3/2} at 164.0 eV, Se⁰ 3*d*_{5/2} at 55.6 eV, and S⁰ 2*p* at 99.3 eV) is marked by a vertical dotted line to delineate the blueshift or redshift. We used the 8A1 beam line of the PLS with a photon energy of 600 eV, So the peak position and shapes are different from those shown in Fig. S9.

Peak position (in eV) is summarized in the following table, where the ΔE_M represents the Mo or W peak red shift of the sample relative to that of the bulk, and ΔE_X corresponds to the S

or Se peaks. The redshift of the XPS binding energies could be attributed to the states at the nearest E_F , which are correlated with the more metallic phase. The chalcogen vacancy makes the sample more metallic. The XPS data consistently show that the TMD nanosheets are more metallic than the bulk phase. The shifts are similar for all samples, which is correlated with the concentration of chalcogen vacancies (5-10%). In the case of Si-MoSe₂, the peak was resolved into four bands: two Se1 bands (at 54.6 and 55.4 eV) for the Se²⁻ of Mo-Se bonding structures, and two blue Se2 bands (at 55.7 and 56.5 eV) for the bridge (Se₂²⁻) anions at the defects. The Si and Si-O peaks of Si NWs appears at 98.6 and 102.8 eV. The Si-TMD samples show a blueshift to 99.8 and 104 eV, respectively.

		Mo 3 <i>d</i> _{5/2}	W 4 <i>f</i> _{7/2}	S 2 <i>p</i> _{3/2}	Se 3 <i>d</i> _{5/2}	ΔE_M	ΔE_X
MoS ₂	Bulk	229.45		162.29		0.16	0.16
	Sample	229.29		162.13			
MoSe ₂	Bulk	229.18			54.76	0.20	0.22
	Sample	229.98			54.53	0.20	0.23
WS ₂	Bulk		32.89	162.49		0.21	0.22
	Sample		32.68	162.27		0.21	0.22
WSe ₂	Bulk		32.71		55.01	0.17	0.22
	Sample		32.54		54.78	0.17	0.23

Fig. S6 SEM images of freestanding MoS_2 , $MoSe_2$, WS_2 , and WSe_2 nanosheets.

Fig. S7 (a) SEM EDX data of the commercially available bulk powders ($MoS_2 99\%$, $MoSe_2 99\%$, $WS_2 99.8\%$, and $WSe_2 99.8\%$, purchased from Alfa Aesar) and the MoS_2 , $MoSe_2$, WS_2 , and WSe_2 nanosheets. (b) [X]/[M] ratio of MoS_2 , $MoSe_2$, WS_2 , and WSe_2 nanosheets and corresponding bulk powders. In the EDX spectrum, Mo L shell and S K shell peaks are overlapped so that the [S]/[Mo] is inaccurate. Therefore, we used only XPS data to obtain the ratio for MoS_2 . SEM EDX, XPS. TEM EDX data shows that the average value of [X]/[M] ratio of bulk powders is 2, while that of MoS_2 , $MoSe_2$, WS_2 , and WSe_2 is [S]/[Mo] = 1.7, [Se]/[Mo] = 1.8, [S]/[W] = 1.8, and [Se]/[W] = 1.6, respectively.

Fig. S8 Electron spin (or paramagnetic) resonance (ESR or EPR) spectra for MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets and corresponding commercially available bulk powders (MoS₂ 99%, MoSe₂ 99%, WS₂ 99.8%, and WSe₂ 99.8%, purchased from Alfa Aesar).

ESR measurements were performed on a Bruker EMX-Plus spectrometer at room temperature. Ten milligrams of as-prepared samples were loaded in a quartz tube. The microwave frequency v was 9.64 GHz (X-band), and the *g*-factor was calculated as $hv = g \times \mu_B \times B$, where μ_B and B are the Bohr magneton and magnetic field, respectively. Bulk powders samples have no signal except MoS₂. In contrast, all nanosheet samples exhibit a S shape signal (per mg) at 344 mT (g = 2.00), due to the S or Se vacancies. The MoS₂ and WS₂ exhibit a stronger S shaped signal than MoSe₂ and WS₂, which is correlated with the higher concentration of chalcogen vacancies.

Fig. S9 Fine-scanned XPS data of Mo 3*d*, W 4*f*, S 2*p*, and Se 3*d* peaks of bulk and freestanding nanosheets. The data points (open circles) are fitted by Voigt functions. The position of the metal phase peak (Mo⁰ 3*d*_{5/2} at 228.0 eV, W⁰ 4*f*_{7/2} at 31.4 eV, S⁰ 2*p*_{3/2} at 164.0 eV, and Se⁰ 3*d*_{5/2} at 55.6 eV) is marked by a vertical dotted line to delineate the blueshift or redshift. A laboratory-based spectrometer was used with a photon energy of 1486.6 eV (Al K α).

Peak position is summarized in the following table, where the ΔE_M represents the Mo or W peak redshift (in eV) of the sample relative to that of the bulk, and ΔE_X corresponds to the redshift of S or Se peaks. The redshift of the XPS binding energies could be attributed to the states at the nearest E_F , which are correlated with the more metallic phase. The chalcogen vacancy makes the sample more metallic. The XPS data consistently show that the TMD nanosheets are more metallic than the bulk phase. The magnitude of redshift is larger for MoS₂ and WSe₂ compared to MoSe₂ and WS₂, due to the higher concentration of chalcogen vacancies.

		Mo 3 <i>d</i> _{5/2}	W $4f_{7/2}$	S 2 <i>p</i> _{3/2}	Se $3d_{5/2}$	ΔE_{M}	$\Delta E_{\rm X}$
MoS ₂	Bulk	229.39		162.29		0.49 eV	0.65 eV

	Sample	228.90		161.64			
MoSe ₂	Bulk	229.98			54.63	0.17 eV	0.11 eV
	Sample	229.81			54.50		
WS ₂	Bulk		32.41	162.02		0.11 aV	0.11 eV
	Sample		32.30	161.86		0.11 ev	0.11 ev
WSe ₂	Bulk		32.56		54.87	0.26 aV	0.45 aV
	Sample		32.20		54.42	0.30 eV	0.43 eV

Fig. S10 (a) XRD pattern of Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂ after 3 h PEC test in 0.5 M H₂SO₄. The peaks of the samples were referenced to those of MoS₂ (JCPDS No. 87-2416, P6₃/mmc, a = 3.160, c = 12.290 Å), MoSe₂ (JCPDS No. 29-0914, P6₃/mmc, a = 3.287 Å, c = 12.925 Å), WS₂ (JCPDS No. 08-0237, P6₃/mmc, a = 3.154 Å, c = 12.362 Å), and WSe₂ (JCPDS No. 38-1388, P6₃/mmc, a = 3.285 Å, c = 12.982). (b) HAADF STEM image, EDX elemental mapping of Si, O, Mo (or W), and S (or Se) elements, and corresponding EDX spectrum for Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂. (c) Survey and fine-scanned XPS data of W 4*f*, S 2*p*, and Si 2*p* peaks of Si-WS₂ before/after 3 h PEC test. The data points (open circles) are fitted by Voigt functions. A laboratory-based spectrometer was used with a photon energy of 1486.6 eV (Al K α). So the peak position and shapes are different from those shown in Fig. S5.

After the PEC, the XRD peaks matched the 2H phase of TMD nanosheets, indicating the phase remains the same as that of as-grown samples. The EDX data shows that the TMD nanosheets remain on the Si NWs and the ratio of M:X is about 1:1.8, which is almost the same as that of before. The EDX mapping of individual NCs before/after the PEC shows that the samples consisted of the Si NW and the TMD shell, and the core-shell structures are persistent during the PEC reaction. The XPS spectrum was examined for Si-WS₂ as a representative sample. Fine-scanned XPS data of W 4*f*, S 2*p*, and Si 2*p* peaks of before/after samples show that the peak feature and position remains nearly the same.

Fig. S11 Nyquist plots of Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂ in 0.5 M H₂SO₄ (pH 0) measured for EIS in the frequency range from 1 MHz to 0.1 Hz, under AM1.5G irradiation (100 mW cm⁻²). The applied potential is 0 V (vs. RHE) for HER. The equivalent circuit is shown in the inset of (a), and the fitting curves are represented by the solid lines. The circuit diagram is shown in the inset.

The simulation of EIS spectra (fitted lines) using an equivalent circuit model yielded the R_{ct} values (R_{ct1} and R_{ct2}), with the corresponding CPE (CPE₁ and CPE₂). Under light irradiation, the value of R_{ct} (= $R_{ct1} + R_{ct2}$) is 172, 112, 109, and 203 Ω , respectively, for Si-MoS₂, Si-MoSe₂, Si-WS₂, and Si-WSe₂. The similar values indicate the comparable photoinduced charge transfer at the electrode-electrolyte interface. The fitting parameters are summarized as follows.

	MoS_2	MoSe ₂	WS ₂	WSe ₂
$R_{e}(\Omega)$	4.8	1.3	3.1	1.9
$R_{ct1}(\Omega)$	149	75	73	161
$R_{ct2}(\Omega)$	23	37	36	42
$CPE_1(F)$	8.7 × 10 ⁻⁹	1.1×10^{-8}	5.3 × 10 ⁻⁹	1.6×10^{-4}
$CPE_2(F)$	5.6×10^{-1}	9.7×10^{-4}	1.3×10^{-4}	8.8×10^{-8}
$R_{ct1} + R_{ct2}(\Omega)$	172	112	109	203

Fitting parameters of Nyquist plots.

Fig. S12 Mott-Schottky plots at 0.5, 1, and 2 kHz for (a) Si-MoS₂, (b) Si-MoSe₂, (c) Si-WS₂, and (d) Si-WSe₂ in 0.5 M H₂SO₄ (pH 0). The flat band potentials (E_{fb}) are obtained from the intercepts of the extrapolated lines; 0.17 V for Si-MoS₂, 0.23 V Si-MoSe₂, 0.25 V for Si-WS₂, and 0.20 V Si-WSe₂.

at 200 mV	$R_{s}\left(\Omega ight)$	$R_{\mathrm{ct}}(\Omega)$
MoS_2	5.7	40.99
MoSe ₂	5.6	19.55
WS ₂	5.7	9.1
WSe ₂	5.8	66.39

Fig. S13 Nyquist plots for EIS measurements of MoS_2 , $MoSe_2$, WS_2 , and WSe_2 nanosheets, using the frequency in the range from 100 kHz to 0.1 Hz at a representative potential of -0.2 V (vs. RHE). The plots in the right panel corresponds to the magnified one in the marked area on the left plot. The modified Randles circuit for fitting is shown. The data points and the fitting curves are represented by the circles and black line, respectively.

Electrochemical impedance spectroscopy (EIS) measurements of the samples were performed using a 100 kHz–0.1 Hz frequency range and an amplitude of 10 mV at $\eta = 0.2$ V. In the high-frequency limit and under non-Faradaic conditions, the electrochemical system is approximated by the modified Randles circuit shown in the inset, where R_s denotes the solution resistance, CPE is a constant-phase element related to the double-layer capacitance, and R_{ct} is the charge-transfer resistance from any residual Faradaic processes. A semicircle in the lowfrequency region of the Nyquist plots represents the charge transfer process, with the diameter of the semicircle reflecting the charge-transfer resistance. The real (Z') and negative imaginary (-Z') components of the impedance are plotted on the x and y axes, respectively. The simulation of the EIS spectra using an equivalent circuit model allowed us to determine the charge transfer resistance, R_{ct} , which is a key parameter for characterizing the catalyst-electrolyte charge transfer process. The fitting parameters of R_s and R_{ct} (in Ω) are listed above.

Fig. S14 Cyclic voltammetry (CV) curves of MoS₂, MoSe₂, WS₂, and WSe₂ nanosheets in a non-Faradaic region (0.1-0.2 V vs. RHE), at 100-200 mV s⁻¹ scan rates (with a step of 20 mV s⁻¹) and in 0.5 M H₂SO₄ solution. Difference (ΔJ) between the anodic charging and cathodic discharging currents measured at 0.15 V (vs. RHE) and plotted as a function of the scan rate. The value in parenthesis represents the double-layer capacitance (C_{dl}), obtained by the half of the linear slope. CV data were measured at 0.1-0.2 V, in a non-Faradaic region. The C_{dl} was obtained as the slope (half value) of a linear fit of ΔJ vs. scan rate (100-200 mV s⁻¹), where ΔJ is the difference between the anodic charging (positive value) and cathodic discharging currents (positive value). The C_{dl} value in a unit of mF cm⁻². The C_{dl} value is 10.7, 11.6, 14.7, and 8.2 mF cm⁻², respectively, for MoS₂, MoSe₂, WS₂, and WSe₂. The sample with higher catalytic activity consistently exhibits a larger charge capacitance. Therefore, the double-layer capacitance determines the HER catalytic activity of samples.

References

- S1. D. Merki, S. Fierro, H. Vrubel and X. Hu, Chem. Sci., 2011, 2, 1262-1267.
- S2. M. A. R. Anjum, H. Y. Jeong, M. H. Lee, H. S. Shin and J. S. Lee, *Adv. Mater.*, 2018, **30**, 1707105.
- S3. Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti,
 C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov and I.
 Chorkendorff, *Nat. Mater.*, 2011, 10, 434-438.
- S4. P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber and J. Loo, *Chem. Eur. J.*, 2012, **18**, 13994-13999.
- S5. Q. Ding, F. Meng, C. R. English, M. C. Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers and S. Jin, *J. Am. Chem. Soc.*, 2014, **136**, 8504–8507.
- S6. Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. -C. Chang, M. -L. Tsai, D.
 Ma, X. Zhang, R. J. Hamers, J. -H. He and S. Jin, *Adv. Mater.*, 2015, 27, 6511-6518.
- S7. L. Zhang, C. Liu, A. B. Wong, J. Resasco and P. Yang, Nano Res., 2015, 8, 281-287.
- S8. K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y. -S. Shim, D. H. Kim, T. Kim, W. Sohn, J. -M. Jeon, C. -H. Lee, K. T. Nam, S. Han, S. Y. Kim and H. W. Jang, *Energy Environ. Sci.*, 2016, 9, 2240-2248.
- S9. C. -J. Chen, K. -C. Yang, C. -W. Liu, Y. -R. Lu, C. -L. Dong, D. -H. Wei, S. -F. Hu and R.
 -S. Liu, *Nano Energy*, 2017, **32**, 422-432.
- S10. Y. Hou, Z. Zhu, Y. Xu, F. Guo, J. Zhang and X. Wang, J. Hydrogen Energy, 2017, 42, 2832-2838.
- S11. S. Oh, J. B. Kim, J. T. Song, J. Oh and S. -H. Kim, J. Mater. Chem. A, 2017, 5, 3304– 3310.
- S12. R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng and M. Shen, ACS Appl. Mater. Interfaces, 2017, 9, 6123–6129.

- S13. L. A. King, T. R. Hellstern, J. Park, R. Sinclair and T. F. Jaramillo, ACS Appl. Mater. Interfaces, 2017, 9, 36792-36798.
- S14. J. Joe, C. Bae, E. Kim, T. A. Ho, H. Yang, J. H. Park and H. Shin, Catalysts, 2018, 8, 580.
- S15. G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang and M. Shen, *Appl. Phys. Lett.*, 2018, **112**, 013902.
- S16. D. M. Andoshe, G. Jin, C. -S. Lee, C. Kim, K. C. Kwon, S. Choi, W. Sohn, C. W. Moon, S. H. Lee, J. M. Suh, S. Kang, J. Park, H. Heo, J. K. Kim, S. Han, M. H. Jo and H. W. Jang, *Adv. Sustainable Syst.*, 2018, 2, 1700142.
- S17. Q. Zhou, S. Su, D. Hu, L. Lin, Z. Yan, X. Gao, Z. Zhang and J. -M. Liu, *Nanotechnology*, 2018, **29**, 105402.
- S18. R. Fan, G. Huang, Y. Wang, Z. Mi and M. Shen, Appl. Catal. B, 2018, 237, 158-165.
- S19. M. Alqahtani, S. Sathasivam, F. Cui, L. Steier, X. Xia, C. Blackman, E. Kim, H. Shin, M. Benamara, Y. I. Mazur, G. J. Salamo, I. P. Parkin, H. Liua and J. Wu, *J. Mater. Chem. A*, 2019, 7, 8550–8558.
- S20. S. Seo, S. Kim, H. Choi, J. Lee, H. Yoon, G. Piao, J. C. Park, Y. Jung, J. Song, S. Y. Jeong, H. Park and S. Lee, *Adv. Sci.*, 2019, 6, 1900301.
- S21. A. Hasani, Q. V. Le, M. Tekalgne, M. -J. Choi, T. H. Lee, S. H. Ahn, H. W. Jang and S. Y. Kim, ACS Appl. Mater. Interfaces, 2019, 11, 29910-29916.
- S22. R. Fan, J. Zhou, W. Xun, S. Cheng, S. Vanka, T. Cai, S. Ju, Z. Mi and M. Shen, *Nano Energy*, 2020, **71**, 104631.