Supporting Information

Ratiometric chemosensor for differentiation of TNP from other NACs by distinct blue fluorescence and visualization of latent fingerprints

Sukhvinder Dhiman^a, Manzoor Ahmad^a Gulshan Kumar^b, Vijay Luxami^b, Prabhpreet Singh^a, Subodh Kumar^{a*}

^{a*}Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India

^bSchool of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

S.No	Content	Page No
1	Figure S1: ¹ H NMR spectrum of DMAS-TP	2
2	Figure S2: ¹³ C NMR spectrum of DMAS-TP	2
3	Figure S3: HRMS spectrum of DMAS-TP	3
4	Figure S4 : Change in (a) UV-VIS absorbance and (b) fluorescence intensity of DMAS-TP with increasing amounts of HEPES fraction.	3
5	Figure S5: (a) The effect of NACs on the absorbance of DMAS-TP; NACs 0 = DMAS-TP; $1 = 2,4,6$ -trinitrotoluene; $2 = 2,4,6$ -trinitrophenol; $3 =$ aniline; $4 =$ 1-chloro-3-nitroaniline; $5 = 2$ -nitroaniline; $6 = 2,4$ -dinitroaniline; $7 = 4$ - nitrophenol; $8 =$ 1-chloro-4-nitrophenol; $9 =$ 1-chloro-2,4-dinitrobenzene; $10 =$ 1-chloro-2-nitrobenzene; $11 = 2$ -nitrophenol; $12 = 4$ -nitrophenol; $13 =$ 1- methyl-2-nitrobenzene; $14 = 2,4$ -dinitotoluene; $15 = 4$ -nitrobenzaldehyde; $16 =$ 2-nitrobenzaldehyde; $17 = 3,5$ -dintrobenzoic acid; $18 = 2,6$ -dinitrotoluene; (b-c) the formation of different stoichiometric species of DMAS-TP with [TNP]	4
6	Figure S6 : Effect of different inorganic anions (10 equivalents) on the (a) absorption and (b) fluorescence spectrum of DMAS-TP .	4
7	Figure S7 : The effect of different NACs on the fluorescence intensity of DMAS-TP (10 μ M, HEPES buffer pH 7.4, 0.1% DMSO)	5
8	Figure S8 : Plot of change in the fluorescence intensity of DMAS-TP at 615 nm and 521 nm (a) on gradual addition of TNP and (b) on gradual addition of TNT	5
9	Figure S9 : (a) The fit model for the titration of DMAS-TP with TNP; (b) The stoichiometric formation of DMAS-TP \cap (TNP) ₂	5
10	Figure S10: Change in fluorescence intensity at 480 nm on titration of DMAS-TP with (a) TNP and (b) with TNT using excitation wavelength 390 nm.	6
11	Table S1: the comparison table of DMAS-TP with other fluorescence probes	6
12	Figure S11- Effect of 300W xenon lamp on fluorescence spectrum (a) and intensity (b) of DMAS-TP with increasing time	7
13	Figure S12 : (a) The fit model for the titration of DMAS-TP with TNT; (b) The stoichiometric formation of DMAS-TP \cap TNT and DMAS-TP \cap (TNT) ₃	7
14	Table S1. The electronic excitation wavelength (nm), oscillator strengths and compositions of the low-lying singlet excited states of the DMAS-TP-B and	7

	its complex DMAS-TP-B∩(TNP)2	
15	Figure S13: (A,B) DLS studies in water (0.1% DMSO) (A) DMAS-TP and	8
	TNT solution; (B) DMAS-TP and DNT solution (C, D) thin films using	
	fluorescence microscopic (C) DMAS-TP and TNT (5 equiv.); (D) DMAS-TP	
	and DNT (5 equiv.) solution	
16	Figure S14. MOs of DMAS-TP-B and DMAS-TP-B.2TNPs	8
17	Figure S15: The comparison of UV-Vis spectrum obtained theoretically from	9
	optimized structures of DMAS-TP-A (TNP) ₂ and DMAS-TP-B (TNP) ₂	
	with those found from addition of 2 and 3 equivalents of TNP to the solution	
	of DMAS-TP	

Figure S1: ¹H NMR spectrum of DMAS-TP

Figure S2: ¹³C NMR spectrum of DMAS-TP

Figure S3: HRMS spectrum of DMAS-TP

Figure S4: Change in (a) UV-Vis absorbance and (b) fluorescence intensity of **DMAS-TP** with increasing amounts of HEPES fraction.

Figure S5: (a) The effect of NACs on the absorbance of DMAS-TP; NACs 0 = DMAS-TP; 1 = 2,4,6-trinitrotoluene; 2 = 2,4,6-trinitrophenol; 3 = aniline; 4 = 1-chloro-3-nitroaniline; 5 = 2-nitroaniline; 6 = 2,4-dinitroaniline; 7 = 4-nitrophenol; 8 = 1-chloro-4-nitrophenol; 9 = 1-chloro-2,4-dinitrobenzene; 10 = 1-chloro-2-nitrobenzene; 11 = 2-nitrophenol; 12 = 4-nitrophenol; 13 = 1-methyl-2-nitrobenzene; 14 = 2,4-dinitotoluene; 15 = 4-nitrobenzaldehyde; 16 = 2-nitrobenzaldehyde; 17 = 3,5-dintrobenzoic acid; 18 = 2,6-dinitrotoluene; (b-c) the formation of different stoichiometric species of DMAS-TP with [TNP]

Figure S6: Effect of different inorganic anions (10 equivalents) on the (a) absorption and (b) fluorescence spectrum of **DMAS-TP**.

Figure S7: The effect of different NACs on the fluorescence intensity of **DMAS-TP** (10 μ M, HEPES buffer pH 7.4, 0.1% DMSO). NACs 0 = DMAS-TP; 1 = 2,4,6-trinitrotoluene; 2 = 2,4,6-trinitrophenol; 3 = aniline; 4 = 1-chloro-3-nitroaniline; 5 = 2-nitroaniline; 6 = 2,4-dinitroaniline; 7 = 4-nitrophenol; 8 = 1-chloro-4-nitrophenol; 9 = 1-chloro-2,4-dinitrobenzene; 10 = 1-chloro-2-nitrobenzene; 11 = 2-nitrophenol; 12 = 4-nitrophenol; 13 = 1-methyl-2-nitrobenzene; 14 = 2,4-dinitotoluene; 15 = 4-nitrobenzaldehyde; 16 = 2-nitrobenzaldehyde; 17 = 3,5-dintrobenzoic acid; 18 = 2,6-dinitrotoluene; (a) fluorescence intensity; (b) fluorescence spectra (showing increase in fluorescence intensity between 510-540 nm only in case of TNP)

Figure S8: Plot of change in the fluorescence intensity of **DMAS-TP** at 615 nm and 521 nm (a) on gradual addition of TNP and (b) on gradual addition of TNT

Figure S9: (a) The fit model for the titration of **DMAS-TP** with TNP; (b) The stoichiometric formation of **DMAS-TP** \cap (**TNP**)₂

Figure S10: Change in fluorescence intensity at 480 nm on titration of **DMAS-TP** with (a) TNP and (b) with TNT using excitation wavelength 390 nm.

Table S1: the comparison table of DMAS-TP with other fluorescence probes

Publication	Fluoroph ore	solvent	λ _{em} (nm)	LOD FL	λ _{abs} (nm)	LOD abs	Paper strip
Present	Single molecule	Water	615	2 nM	490	20 nM	Turn-ON
ACS Appl. Mater. Interfaces 2018, 10, 27260–27268	polymer	95 % water	501- 520	473 nM	430		quenching
Analyst, 2019,144, 3620-3634	Single molecule	water	400- 480	6000 nM	374		quenching
J. Mater. Chem. C, 2020,8, 8257-8267	Single molecule	H₂O/THF (9/1)	635	61.4 nM			quenching
Anal. Chem. 2019, 91, 13244–13250	Single molecule	DMSO	530	63 nM		no	
Dyes and Pigments, 2018, 156, 307- 317.	Single molecule	water	480	0.0001 nM	340		quenching

RSC Adv., 2018, 8,	Single	methanol	420	820 nM,	500	 quenching
31658-31665	molecule		to			
			586			
Sensors &	Single	CH₃CN	550		520	
Actuators: B.	molecule					
Chemical 280						
(2019) 298–305						
Sensors and	Single	PBS–DMSO	494	10 nM	336	 quenching
Actuators B 231	molecule	(99.5:0.5)				
(2016) 293–301						
Sensors and	Single	EtOH	518	77.5 nM	365	 quenching
Actuators B 265	molecule					
(2018) 476–487						
Inorg. Chem. 2019,	MOF	EtOH	480-	7.2 nM	380	
58, 8198-8207			580			
ACS Sustainable	MOF 1	aqueous	437,	40 nM	333	
Chem. Eng. 2019,		suspension	637			
7, 819–830						

Figure **S11**- Effect of 300W xenon lamp on (a) fluorescence spectrum and (b) fluorescence intensity of **DMAS-TP** with increasing time.

Figure S12: (a) The fit model for the titration of DMAS-TP with TNT; (b) The stoichiometric formation of DMAS-TP \cap TNT and DMAS-TP \cap (TNT)₃

Table S2. The electronic excitation wavelength (nm), oscillator strengths and

compositions of the low-lying singlet excited states of the DMAS-TP-B and its complex DMAS-TP-B∩(TNP)₂

Symmetry	λ	f	Contributing orbitals	Natural transition orbitals				
	(nm)		(%)	(occupancy)				
DMAS-TP-B								
Singlet-A	479.7	0.8457	H-2→LUMO (46 %)	HONTO→LUNTO (51 %)				
			H-1→L+1 (40 %)	HONTO-1→LUNTO+1 (45 %)				
Singlet-A	475.8	4.055	HOMO→L+2 (67 %)	HONTO→LUNTO (72 %)				
			H-1→L+1 (16 %)	HONTO-1→LUNTO+1 (17 %)				
DMAS-TP-B∩(TNP) ₂								
Singlet-A	478.6	1.5865	H-1→L+2 (91 %)	HONTO→LUNTO (96 %)				
Singlet-A	378.3	2.4512	H-8→L+1 (79 %)	HONTO→LUNTO (85 %)				

Figure S13: (A,B) DLS studies in water (0.1% DMSO) (A) **DMAS-TP** and TNT solution; (B) **DMAS-TP** and DNP solution (C, D) thin films using fluorescence microscopic (C) **DMAS-TP** and TNT (5 equiv.); (D) **DMAS-TP** and DNP (5 equiv.) solution

Figure S14. MOs of DMAS-TP-B and DMAS-TP-B.2TNPs

Figure S15: The comparison of UV-Vis spectrum obtained theoretically from optimized structures of $DMAS-TP\cap(TNP)_2$ with those found from addition of 2 and 3 equivalents of TNP to the solution of DMAS-TP