Supporting information

Nonlinear optical effects in two mercury cyanamide/guanidinium chlorides $Hg_3(NCN)_2Cl_2$ and $Hg_2(C(NH_2)_3)Cl_5$

Xianji Qiao,^{a, ‡} Xiaomeng Liu,^{b, ‡} Lkhamsuren Bayarjargal,^c Alex J. Corkett,^a Wenyan Wang,^a Zili Ma,^a Zheshuai Lin, * ^b and Richard Dronskowski * ^{a d}

^aChair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany

^bTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences 29, Zhong Guan Cun East Road, Beijing, 100190, China

^cInstitute of Geosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany

^dHoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China

[‡]Authors equally contributed to this work

Corresponding Authors

- * Email: drons@HAL9000.ac.rwth-aachen.de
- * Email: zslin@mail.ipc.ac.cn

Table S1 Crystallographic data and fractional coordinates (all atoms on 4*a*) for Hg₃(NCN)₂Cl₂ with standard deviations given in parentheses. The thermal displacement parameters of Cl, C and N were constrained to be equal.

Atom	x	у	Z	U _{iso (} Ų)
Hg1	0.7088(5)	0.0841(3)	0.9481(7)	0.0174(11)
Hg2	0.9896(6)	0.44473(31)	-0.0024(7)	0.0211(11)
Hg3	0.2302(6)	0.2061(4)	0.6382(9)	0.0198(12)
Cl1	0.0797(28)	0.1998(24)	0.8868(22)	0.056(6)
Cl2	0.652(3)	0.2870(24)	0.0694(25)	"
N1	0.206(10)	0.031(6)	0.607(5)	"
C1	0.143(6)	0.962(7)	0.698(7)	"
N2	0.068(8)	0.909(7)	0.776(6)	"
N3	0.195(9)	0.386(5)	0.142(5)	"
C2	0.155(10)	0.450(5)	0.236(6)	"
N4	0.129(9)	0.521(5)	0.323(7)	"

Orthorhombic, $Pca2_1$ (No. 29), Z = 4, a = 7.0102(4) Å, b = 10.7779(7) Å, c = 10.4973(7) Å; $R_{wp} = 1.797$ %, $R_p = 1.206$ %.

Table S2 Selected bond lengths and angles in $Hg_3(NCN)_2Cl_2$ with standard deviations given in parentheses. Note that C–N bond and N–C–N angle restraints were introduced to stabilize the refinement based on the prior (superior) single-crystal data.

Bond length (Å)		Bond angle (°)	
Hg1-Cl2	2.256(24)	Cl2-Hg1-N2	109.3(21)
Hg1-N1	2.16(6)	N1-Hg3-N3	166.9(26)
Hg1-N2	2.06(7)	N1-C1-N2	172.7(7)
Hg2-N3	2.19(6)	N3-C2-N4	173.3(7)
Hg2-N4	2.05(6)		
Hg3-Cl1	2.815(26)		
Hg3-Cl2	2.909(24)		
Hg3-N1	1.93(6)		
Hg3-N3	2.00 (5)		
N1-C1	1.277(7)		
C1-N2	1.134(7)		
N3-C2	1.232(7)		
N4-C2	1.205(7)		

Table S3 Crystallographic data and fractional coordinates for $Hg_2(C(NH_2)_3)CI_5$ with standard deviations given in parentheses. The thermal displacement parameters of C, N and H were constrained to be equal. The thermal displacement parameters of H were fixed as 0.1 Å².

Atom	Wyckoff site	x	У	Z	U _{iso (} Ų)
Hg	8 <i>c</i>	0.3702(6)	0.36957(16)	-0.03790(11)	0.0429(6)
Cl1	4 <i>a</i>	0.8605(31)	1/2	0	0.021(4)
Cl2	8 <i>c</i>	0.3679(30)	0.3120(6)	0.0794(5)	0.034(3)
Cl3	8 <i>c</i>	0.3823(30)	0.3900(7)	-0.1601(4)	0.030(3)
C	4 <i>b</i>	0	0.3796(17)	1⁄4	0.016(8)
N1	8 <i>c</i>	0.910(6)	0.4279(12)	0.1956(8)	"
N2	4 <i>b</i>	0	0.2927(17)	1⁄4	"
H1	8c	0.823(12)	0.3988(28)	0.1510(16)	0.1
H2	8c	0.900(12)	0.4944(15)	0.2015(28)	"
H3	8c	0.224(6)	0.2594(24)	0.240(6)	"

Orthorhombic, $C222_1$ (No. 20), Z = 4, a = 4.03993(8) Å, b = 14.9618(4) Å, c = 18.4060(4) Å; $R_{wp} = 2.765$ %, $R_p = 1.744$ %.

Table S4 Selected bond lengths and angles in $Hg_2(C(NH_2)_3)Cl_5$ with standard deviations given in parentheses. Note that C–N bond and N–C–N angle restraints were introduced to stabilize the refinement based on the better single-crystal X-ray diffraction data. The N–H bond length restraints were introduced according to the single-crystal neutron-diffraction study on guanidine.

Bond length (Å)		Bond angle (°)	
Hg1-Cl1	2.921(9)	Cl2-Hg1-Cl3	165.9(4)
Hg1-Cl1	2.867(9)	N1-C1-N1	111.6(20)
Hg1-Cl2	2.325(9)	N1-C1-N2	124.2(10)
Hg1-Cl3	2.270(7)	C1-N1-H1	119.7(23)
C1-N1	1.287(8)	C1-N1-H2	119.1(24)
C1-N2	1.300(9)	C1-N2-H3	118.3(16)
N1-H1	0.994(13)	H1-N1-H2	120.7(23)
N1-H2	1.001(13)	H3-N2-H3	123(3)
N2-H3	1.050(9)		