Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Enhanced Amperometric Acetone Sensing Using Electrospun Non-Stoichiometric WO_{3-x} Nanofibers

Muhammad Imran, a,e,‡ Ebtsam Alenezy,b,c,‡ Ylias Sabri,b* Tony Wang,a Tuquabo Tusfamichael,a Prashant Sonar,a Nunzio Motta,a and Mahnaz Shafieja,d,*

^aInstitute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia

^b Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia

^cChemistry department, College of Science and Arts, Al- Qurayyat, Al Jouf University, Kingdom of Saudi Arabia

^dFaculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

^eDepartment of Mechanical Engineering, Pakistan Institute of Engineering and Technology, Multan 60000, Punjab, Pakistan.

*Corresponding author email: mshafiei@swin.edu.au; ylias.sabri@rmit.edu.au

‡ M. I. and E.A. made equal contribution.

Table S1.esponse magnitude (current) of WO_{3-x} NFs based sensor towards acetone at 350 $^{\circ}$ C.

	Response (%)			
Acetone (ppm)	3 V Bias	5 V Bias	7 V Bias	9 V Bias
1.2	9.48	18.23	27.57	34.71
1.8	11.75	22.43	32.72	42.95
2.5	13.50	25.34	37.58	49.37
5.0	19.07	34.61	51.15	68.49
7.5	23.21	41.02	61.71	81.18
10	26.67	46.35	69.17	91.42
12.5	29.58	50.26	74.63	99.96

Table S2. Normalized response of WO_{3-x} NFs based sensor towards acetone at 350 $^{\circ}$ C.

	Response (μA)				
Acetone (ppm)	3 V Bias	5 V Bias	7 V Bias	9 V Bias	
1.2	25.03	79.55	116.08	148.13	
1.8	50.30	95.88	141.33	183.44	
2.5	57.40	108.70	161.05	210.15	
5.0	79.52	149.31	220.79	292.95	
7.5	97.47	178.45	262.73	348.83	
10	112.42	201.10	295.98	395.10	
12.5	127.60	219.22	325.80	434.96	

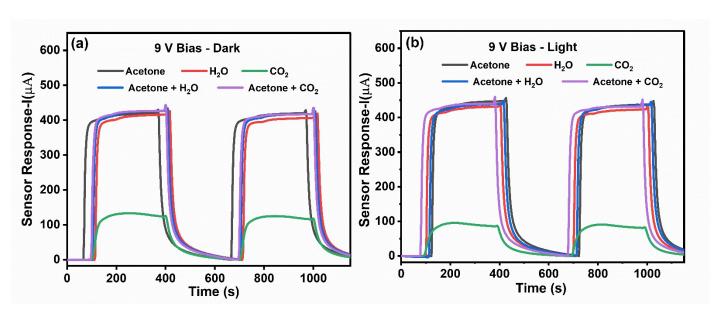


Fig. S1. Normalized response during Selectivity tests of WO_{3-x} NFs based sensor (a) under dark and (b) UV conditions in the interfering environment of CO_2 (500 ppm) and humidity (20% RH at 30 °C) and 12.5 ppm acetone.

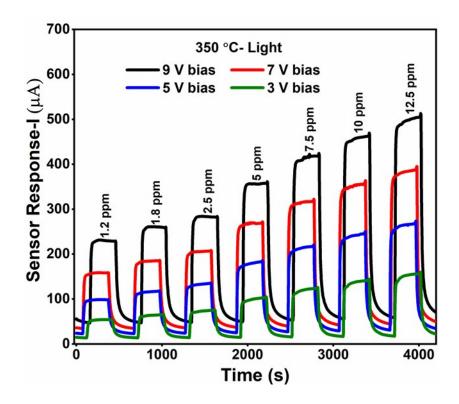


Fig. S2. Gas sensing response of WO_{3-x} NFs at 350 °C under UV irradiation for various concentrations and bias voltages.