From AgGaS₂ to AgHgPS₄: vacancy defects and highly distorted HgS₄ tetrahedra double-induced remarkable second-harmonic generation response

Wenhao Xing,^[abc] Naizheng Wang,^[ac] Chunlan Tang,^[b] Chunxiao Li,^[ac] Zheshuai Lin,^[a]

Jiyong Yao,*[a] Wenlong Yin,*[bd] and Bin Kang[bd]

^a Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China, corresponding author: Jiyong Yao, E-mail: jyao@mail.ipc.ac.cn.

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^d Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China.

Atom	x	У	Ζ	$U_{ m eq}({ m \AA}^2)$ a	BVS
Hg	0.41570 (4)	0.81444 (8)	0.26543 (4)	0.0238 (2)	2.04
Ag	0.90874 (18)	0.6438 (2)	0.52054 (16)	0.0290 (3)	1.09
Р	0.4167(6)	0.3155(4)	0.5180(4	0.0098 (8)	4.81
S1	0.4992 (5)	0.6264 (5)	0.5515 (4)	0.0139 (6)	-2.02
S2	0.5704 (5)	0.1937 (5)	0.3078 (4)	0.0150 (6)	-1.96
S3	0.5069 (5)	0.1464 (5)	0.7370 (4)	0.0143 (6)	-1.94
S4	0.0904 (5)	0.2787 (5)	0.4796 (4)	0.0134 (6)	-2.01

Table S1 Atomic coordinates, equivalent isotropic displacement parameters and bond valence sums(BVS) for AgHgPS4.

 $\overline{{}^{a} U_{eq}}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table S2 Selected band distances (Å) and band angles (°) for AgHgPS₄.

Hg1—S1	2.536 (3)	Ag1—S3 ⁱⁱⁱ	2.624 (3)	
Hg1—S2 ⁱ	2.613 (3)	Ag1—S4 ^v	2.601 (4)	
Hg1—S3 ⁱⁱ	2.559 (3)	P1—S1	2.056 (4)	
Hg1—S4 ⁱⁱⁱ	2.526 (3)	P1—S2	2.035 (5)	
Ag1—S1	2.564 (3)	P1—S3	2.058 (5)	
Ag1—S2 ^{iv}	2.610 (3)	P1—S4	2.058 (5)	
S1—Hg1—S2 ⁱ	104.98 (10)	S2 ^{iv} —Ag1—S3 ⁱⁱⁱ	113.64 (11)	
S1—Hg1—S3 ⁱⁱ	107.87 (10)	S4v—Ag1—S2 ^{iv}	106.99 (11)	
S3 ⁱⁱ —Hg1—S2 ⁱ	106.49 (10)	S4v—Ag1—S3 ⁱⁱⁱ	104.24 (11)	
S4 ⁱⁱⁱ —Hg1—S1	123.35 (10)	S1—P1—S3	109.7 (2)	
S4 ⁱⁱⁱ —Hg1—S2 ⁱ	99.22 (10)	S1—P1—S4	111.7 (2)	
S4 ⁱⁱⁱ —Hg1—S3 ⁱⁱ	113.02 (9)	S2—P1—S1	110.1 (2)	
S1—Ag1—S2 ^{iv}	107.93 (11)	S2—P1—S3	108.55 (19)	
S1—Ag1—S3 ⁱⁱⁱ	110.12 (11)	S2—P1—S4	108.7 (2)	
S1—Ag1—S4 ^v	114.01 (11)	S3—P1—S4	108.1 (2)	

Symmetry codes: (i) x, y+1, z; (ii) x-1/2, -y+1, z-1/2; (iii) x+1/2, -y+1, z-1/2; (iv) x+1/2, -y+1, z+1/2; (v) x+1, y, z; (vi) x, y-1, z; (vii) x-1/2, -y+1, z+1/2; (viii) x-1, y, z.

Figure S1. The EDX results of AgHgPS₄.

Figure S2. DSC curve of AgHgPS₄.

Figure S3. The infrared spectrum of AgHgPS₄.

