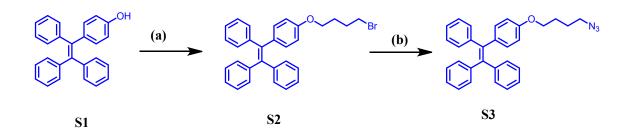
Supporting Information

Acid-base controllable nanostructures and fluorescence detection of H₂PO₄⁻ by molecular shuttling of tetraphenylethene-based [2]rotaxanes

Reguram Arumugaperumal,^a Muthaiah Shellaiah,^b Yu-Kuang Lai,^a Parthiban Venkatesan,^b Putikam Raghunath,^c Shu-Pao Wu,^b Ming-Chang Lin,^c Kien Wen Sun,^b Wen-Sheng Chung^b and Hong-Cheu Lin ^{a,d}*

- ^aDepartment of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan. R.O.C
- ^bDepartment of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan. R.O.C ^cCenter for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan. R.O.C
- ^dCenter for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan. R.O.C

*Author for Correspondence:


Prof. Hong-Cheu Lin Department of Materials Science and Engineering National Chiao Tung University Hsinchu, Taiwan (ROC) Tel: 8863-5712121ext.55305 Fax: 8863-5724727 E-mail: linhc@mail.nctu.edu.tw

Contents:

Synthesis overview, procedure and characterization	S3-S8
Supporting figures and table	S8-S20
NMR, mass spectra data and IR spectra	S20-S30
References	S31

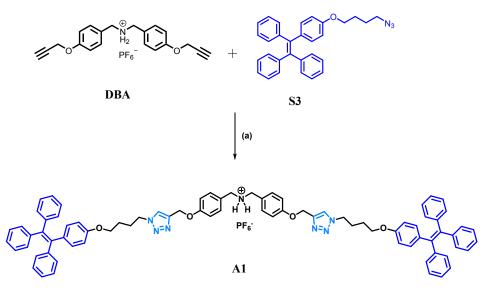
Synthesis overview

The following compounds were synthesized according to the reported procedures: 4-(1,2,2-triphenylvinyl)phenol **S1**^{S1} and compound **DBA**.^{S2}

Scheme S1. Synthesis of stopper S3. Reagents and conditions: (a)1,4 dibromobutane, K₂CO₃, acetone, reflux, 24 h, 79 % (b) NaN₃, DMF, 80 °C, 12 h, 94%;

Synthetic procedure and characterization

Compound S2


A mixture of **S1** (2.3 g, 6.6 mmol) and K₂CO₃ (4.6 g, 33.3 mmol) in acetone (300 mL) was refluxed under N₂ atmosphere for 1 h, then 1,4-dibromobutane (2 mL, 16.7 mmol) was added into reaction mixture and stirred 24 h. After filtration, the solution was concentrated under reduced pressure. The crude product was purified by column chromatography over silica gel (eluent: 1 to 2 % EtOAc in hexane, increase in increments of 0.5 % after 1000 mL of eluent) to afford **S2** as a pale yellow oil (2.5 g, 79 %). ¹**H NMR** (300 MHz, CDCl₃): δ = 7.13–6.99 (m, 15H), 6.92 (dd, *J* = 2.1 Hz, 6.9 Hz, 2H), 6.62 (dd, *J* = 2.1 Hz, 6.6 Hz, 2H), 3.92 (t, *J* = 6.0 Hz, 2H), 3.47 (t, *J* = 6.3 Hz, 2H), 2.09–2.00 (m, 2H), 1.95–1.85 (m, 2H). ¹³**C NMR** (75 MHz, CDCl₃): δ = 157.70, 144.36, 144.30, 140.82, 140.43, 136.52, 132.88, 131.68, 128.05, 127.93, 126.69, 126.57, 113.87, 66.93, 33.84, 29.82, 28.24.

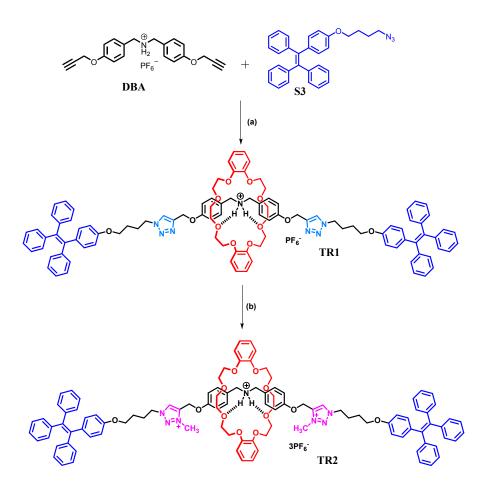
Compound S3

A mixture of **S2** (2.2 g, 4.5 mmol) and NaN₃ (1.48 g, 22.8 mmol) in DMF (15 mL) was stirred at 80 °C for 12 h. After cooling to the room temperature, the reaction mixture was filtered and then concentrated under reduced pressure. The crude product was purified by column chromatography over silica gel (eluent: 3 % EtOAc in hexane) to afford **S3** as a pale yellow

oil (1.9 g, 94 %). ¹**H NMR** (300 MHz, CDCl₃): δ = 7.13–6.99 (m, 15H), 6.93 (dd, *J* = 1.8 Hz, 6.9 Hz, 2H), 6.62 (dd, *J* = 2.1 Hz, 8.7 Hz, 2H), 3.91 (t, *J* = 5.7 Hz, 2H), 3.35 (t, *J* = 6.6 Hz, 2H), 1.85–1.75 (m, 4H). ¹³**C NMR** (75 MHz, CDCl₃): δ = 157.70, 144.35, 144.29, 140.82, 140.42, 136.50, 132.87, 131.67, 128.04, 127.92, 126.67, 126.56, 113.86, 67.27, 51.51, 26.83, 26.08. **HRMS (ESI⁺)**: m/z = 445.2140 [M]⁺ (calcd. 445.2154 for C₃₀H₂₇N₃O).

Synthesis of thread A1

Scheme S2. Synthesis of thread **A1**. Reagents and conditions: (a) CuSO₄.5H₂O, Sodium Ascorbate, THF/water (3:1 ratio), room temp, overnight, 78 %.


Synthetic procedure and characterization

Thread A1

Compound **DBA** (0.3 g, 0.66 mmol) and **S3** (0.293 g, 0.66 mmol) were dissolved in THF/H₂O (v/v = 3:1, 40 mL) in a round-bottomed flask under an inert atmosphere. An aqueous solution of copper (II) sulphate pentahydrate (0.328 g, 1.32 mmol) and sodium ascorbate (0.522 g, 2.64 mmol) was added to the reaction mixture and allowed to stir at room temperature for overnight. Completion of the reaction was monitored by TLC (SiO₂). The solvent was removed under reduce pressure and the crude product dissolved in DCM (100 mL). The organic phase was washed successively with an aqueous solution of NH₄Cl ($2 \times 30 \text{ mL}$) and H₂O (30 mL) and was separated, dried (MgSO₄) and evaporated. The crude product was purified by silica gel chromatography (DCM / MeOH, 9.8/0.2) to afford the pure compound **A1** as a pale white solid

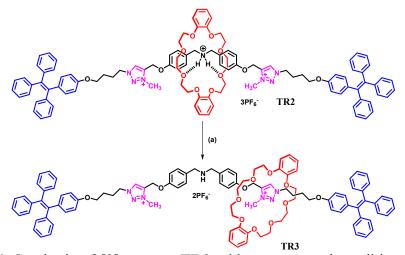
in 78 % yield. ¹**H** NMR (400 MHz, CD₃CN): $\delta_{\rm H}$ 7.83 (s, 2H), 7.27 (d, J = 8.08 Hz, 4H), 7.13– 7.11 (m, 14H) 7.05–7.03 (m, 15H), 6.97 (d, J = 8.52, 4H) 6.92 (d, J = 8.84, 4H) 6.65–6.63 (m, 4H), 5.14 (s, 4H), 4.43–4.39 (m, 4H), 3.90–3.87 (m,4H). 3.70 (s, 4H), 2.03–1.96 (m, 4H), 1.72– 1.65 (m, 4H) ppm; ¹³C NMR (100 MHz, CD₃CN) δ (ppm) = 157.51, 144.01, 143.95, 140.68, 140.29, 135.98, 132.13, 130.93, 130.89, 130.86, 127.75, 127.67, 126.40, 126.34, 126.30, 123.67, 113.38, 66.92, 61.54, 49.63, 26.71, 25.87. **HRMS–ESI** (m/z): [M–PF₆[–]]⁺ calcd for C₈₀H₇₄N₇O₄⁺, 1196.5797; found, 1196.5803.

Synthesis of [2]rotaxane TR1 and TR2

Scheme S3. Synthesis of [2]rotaxane **TR1** and **TR2**. Reagents and condition s: (a) Cu(CH₃CN)₄PF₆, 2,6-lutidine, dry DCM, under N₂ atmosphere, room temperature, 24 h, 75%; (b) CH₃I, CH₃CN, NH₄PF₆, 40 °C, 4 d, 84%.

Synthetic procedure and characterization

[2]Rotaxane TR1


To a solution of **DBA** (500 mg, 1.11 mmol), **DB24C8** (646 mg, 1.44 mmol) in degassed DCM (50 mL) was stirred at room temperature for 2 h under N₂ atmosphere. Then, a solution of S3 (988 mg, 2.22 mmol) in DCM (10 mL), Cu(CH₃CN)₄PF₆ (1.65 g, 4.43 mmol) and 2,6-lutidine (40 µL, 0.35 mmol) were added. The reaction mixture was stirred for 24 h at room temperature. The resulting mixture was dissolved by DCM and then washed with brine three times. Then the organic phase was dried over anhydrous magnesium sulfate, and concentrated which was purified by column chromatography over silica gel (eluent: 0 to 2 % MeOH in DCM, increase in increments of 0.5 % after 750 mL of eluent) to afford [2]rotaxane TR1 as a pale white solid (1.5 g, 75 %). ¹**H** NMR (400 MHz, ACN- d_3): $\delta_{\rm H}$ 7.81 (s, 2H), 7.41 (br, 2H), 7.28 (d, J = 8.72 Hz, 4H), 7.15-7.11 (m,18H), 7.06-7.01 (m, 12H), 6.93 (d, J = 8.8 Hz, 4H), 6.89-6.86 (m, 4H), 6.83-6.78 (m, 8H), 6.65 (d, J = 8.84 Hz, 4H), 5.04 (s, 4H), 4.59 (t, J = 6.64 Hz, 4H), 4.42 (t, J =7.04 Hz, 4H), 4.29–4.27 (m, 4H), 4.07–4.05 (m, 4H), 3.90 (t, J = 6.24 Hz, 4H), 3.78–3.75 (m, 8H), 3.63 (s, 4H), 3.58 (s, 4.26), 2.03–1.95 (m, 4H), 1.73–1.66 (m, 4H) ppm; ¹³C NMR (75 MHz, ACN- d_3): $\delta = 159.7, 158.5, 149.4, 148.4, 145.0, 144.9, 141.6, 141.3, 137.0, 133.1, 131.8, 145.0, 144.9, 141.6, 141.3, 137.0, 133.1, 131.8, 145.0, 144.9, 145.0, 144.9, 145.0, 144.9, 145.0,$ 128.7, 128.6, 127.4, 127.3, 125.5, 123.6, 122.2, 116.8, 115.6, 114.5, 113.4, 71.5, 71.1, 69.4, 68.8, 67.9, 62.3, 52.7, 50.6, 27.7, 26.9. HRMS (ESI⁺): m/z = 1644.7784 [M–PF₆]⁺ (calcd. 1644.7899) for $C_{104}H_{106}N_7O_{12}$).

[2]Rotaxane TR2

To a solution of [2]rotaxane **TR1** (1 g, 0.56 mmol) in MeCN (15 mL), CH₃I (15 mL) was added to the reaction mixture. The reaction mixture was heated at 40 °C for 4 days. Then, the solvent was removed under reduced pressure and the crude product was dissolved in acetone (15 mL) and DCM (15 mL), a saturated aqueous solution of NH₄PF₆ was added and the mixture was stirred for 24 hours at room temperature. The resulting mixture was dissolved by DCM and then washed with brine three times. Then the organic phase was dried over anhydrous magnesium sulfate, and concentrated which was purified by column chromatography over silica gel (eluent: 0 to 2 % MeOH in DCM, increase in increments of 0.5 % after 750 mL of eluent) to afford [2]rotaxane **TR2** as a pale brown solid (1 g, 84 %). ¹**H NMR** (400 MHz, ACN–*d*₃): $\delta_{\rm H} = 8.43$ (s, 2H), 7.50 (br, 2H), 7.36 (d, *J* = 8.72 Hz, 4H), 7.16–7.10 (m, 18H), 7.08–7.01 (m, 12H), 6.95 (d,

J = 8.8 Hz, 4H), 6.87 (m, 12H), 6.69 (d, J = 8.8 Hz, 4H), 5.15 (s, 4H), 4.66 (m, 8H), 4.22 (s, 6H), 4.07 (m, 4H), 3.95 (t, J = 6.12 Hz, 4H), 3.82–3.79 (m,10H), 3.67 (s, 4H), 3.66 (s, 4H), 2.15–2.13 (m, 4H), 1.83–1.79 (m, 4H) ppm; ¹³C NMR (75 MHz, ACN– d_3): $\delta = 158.5$, 158.4, 149.7, 148.4, 145.1, 145.0, 144.9, 141.6, 141.5, 140.5, 137.2, 133.2, 132.2, 131.9, 130.4, 128.8, 128.7, 127.5, 127.4, 126.9, 122.7, 122.2, 115.6, 115.4, 114.6, 113.4, 71.6, 71.8, 70.2, 69.5, 68.8, 67.7, 59.0, 54.7, 52.6, 39.4, 26.9. **HRMS (ESI⁺):** m/z = 1819.7760 [M–2PF₆]⁺ (calcd. 1819.8011 for C₁₀₆H₁₁₂F₆N₇O₁₂P).

Synthesis of [2]rotaxane TR3

Scheme S4. Synthesis of [2]rotaxane TR3 with reagents and conditions: (a) DCM, aq. NaOH (0.1M), 2 h, 95%.

Synthetic procedure and characterization

[2]Rotaxane TR3

[2]Rotaxane **TR2** (50 mg, 23.69 mmol) was dissolved in dichloromethane (5 mL). NaOH (aq) 1 M (2 mL) was added and the mixture was stirred vigorously at room temperature for 2 h. The layers were separated, the organic phase dried over MgSO₄, filtered off and concentrated affording the rotaxane [2]rotaxane **TR3** (40 mg, 95%) as a pale brown solid. ¹H **NMR** (300 MHz, ACN- d_3): δ = 9.07 (s,1H), 8.44 (s, 1H), 7.32 (d, *J* = 8.4 Hz, 4H), 7.14–7.09 (m, 18H), 7.05–6.99 (m, 12H), 6.86 (d, *J* = 8.4 Hz, 6H), 6.83–6.63 (m, 10H), 6.56 (br, 4H), 5.01 (br, 2H), 4.96 (br, 2H), 4.90 (br, 4H), 4.19 (t, *J* = 4.5 Hz, 4H), 3.97 (s, 6H), 3.76 (t, *J* = 4.5 Hz, 6H), 3.69 (s, 12H), 3.64 (s, 4H), 3.53 (br, 6H), 2.20 (br, 4H), 1.77–1.73 (m, 4H). ¹³C **NMR** (75 MHz, ACN- d_3): δ = 157.4, 156.0, 148.5, 147.6, 144.0, 143.9, 140.6, 140.3, 136.0, 134.9, 132.1, 130.8, 130.0, 129.4, 127.7, 127.6, 126.4, 124.1, 122.3, 121.3, 120.8, 118.7, 115.4, 114.6, 113.5, 70.7, 69.7, 68.9, 68.6, 68.3, 67.9, 58.1, 53.5, 51.9, 31.3, 29.5, 25.5, 22.3, 13.3. **HRMS (ESI⁺)**: m/z = 1964.7647 [M+H]⁺ (calcd. 1964.7653 for C₁₀₆H₁₁₂F₁₂N₇O₁₂P₂).

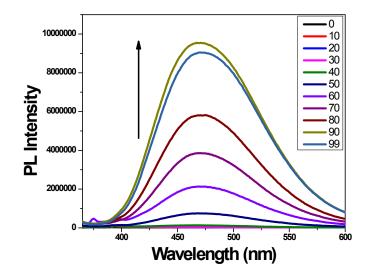


Fig. S1 Fluorescence spectra of thread A1 (10 μ M) with different water fractions ($\lambda_{ex} = 325$ nm) in CH₃CN/water solutions.

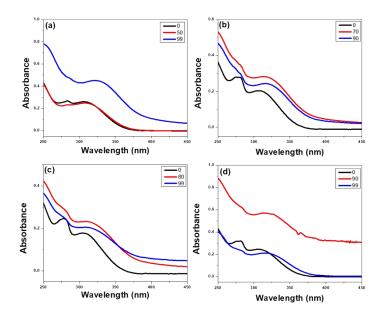


Fig. S2 UV-vis absorption spectra (10μ M) with different water fractions in CH₃CN/water solutions; (a) thread A1 (b) [2]rotaxane TR1 (c) [2]rotaxane TR2 and (d) [2]rotaxane TR3.

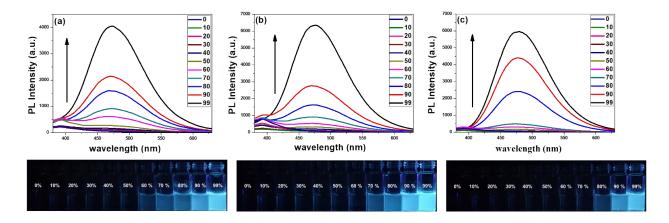


Fig. S3 Fluorescence emission spectra and photographs of [2]rotaxanes (a) TR1, (b) TR2 and (c) TR3 (10 μ M) in DMSO/glycerol solutions with different glycerol fractions (λ_{ex} = 325 nm). Insets: Photo images of fluorescence emissions (excited by UV lamp at 365 nm).

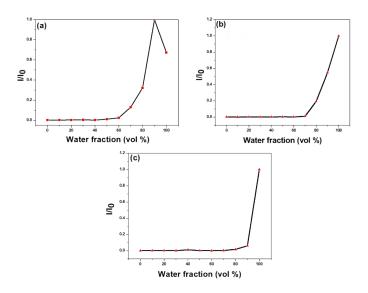


Fig. S4 PL Plots of I/I_0 versus water fractions (f_w) of [2]rotaxanes (a) TR1, (b) TR2 and (c) TR3. Where I_0 = emission intensity in pure CH₃CN solution (10µM).

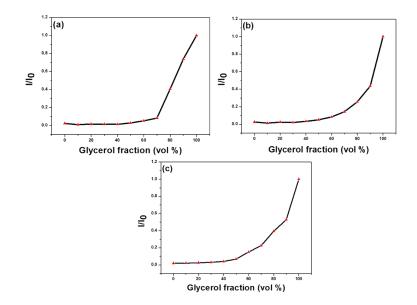
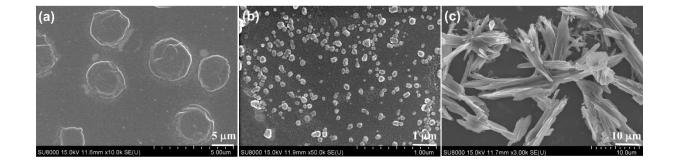



Fig. S5 PL Plots of I/I_0 versus glycerol fractions (f_w) of [2]rotaxanes (a) TR1, (b) TR2 and (c) TR3. Where I_0 = emission intensity in pure DMSO solution (10µM).

Compounds	τ_1 (ns)	τ_2 (ns)	A ₁ (%)	A ₂ (%)	$\tau_{Avg}\left(ns\right)$
TR1 (0%)	4.378	1.0300	57.1	49.29	1.13
TR1 (90%)	1.134	0.6907	77.38	22.62	2.72
TR2 (0%)	4.964	1.4243	45.74	54.26	1.64
TR2 (90%)	0.683	2.5903	49.82	50.18	3.04
TR3 (0%)	1.370	5.502	41.40	58.60	3.79
TR3 (90%)	2.712	0.7349	56.75	43.25	3.79

Table S1. Time-resolved fluorescence decay constants of [2]rotaxanes **TR1**, **TR2** and **TR3** in pure CH₃CN solvent and at 90% of water fraction (f_w) in the CH₃CN/water solutions.

Fig. S6 FE-SEM images of thread A1 (1.0 μ M): (a) in CH₃CN only, (b) CH₃CN/water ($f_w = 50\%$) (c) CH₃CN/water ($f_w = 90\%$). Scale bar was a = 5 μ m, b = 1 μ m and c = 10 μ m.

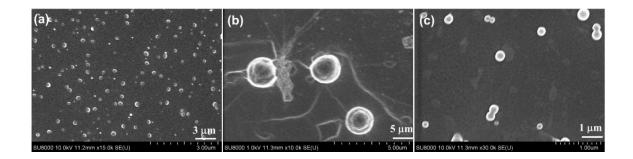
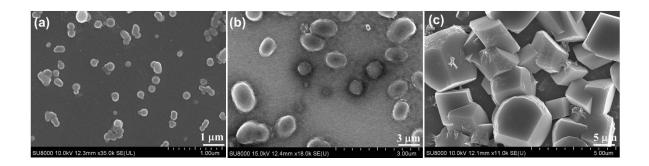



Fig. S7 FE-SEM images of [2]rotaxanes in CH₃CN (1.0 μ M) (a) TR1, (b) TR2 and (c) TR3 Scale bar was a = 3 μ m, b = 5 μ m and c = 1 μ m.

Fig. S8 FE-SEM images of [2]rotaxanes in CH₃CN/water solutions (1.0 μ M): (a) 70% f_w of **TR1**, (b) 80% f_w of **TR2**, (c) 90% f_w of **TR3**. Scale bar is 1 μ m for Figs a while it is 3 μ m and 5 μ m in Figs b and c, respectively.

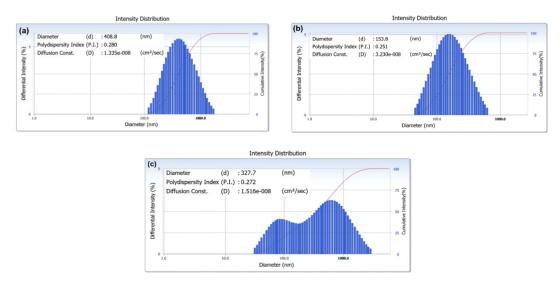


Fig. S9 The size distributions of [2]rotaxanes (a) TR1 at 90 % f_w , (b) TR2 at 99 % f_w and (c) TR3 at 99 % f_w in CH₃CN/water solutions (1.0 μ M).

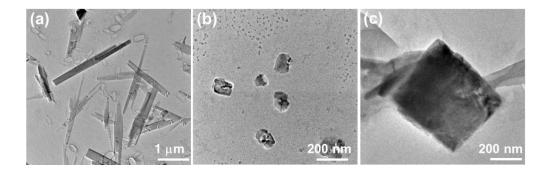


Fig. S10 TEM images of [2]rotaxanes in CH₃CN/water solutions (1.0 μ M): (a) 90% f_w of TR1, (nanorods) (b) 90% f_w of TR3, (truncated cubes) and (c) 99% f_w of TR3 (nanocube). Scale bar is 1 μ m for Figs a = μ m, b and c = 200 nm.

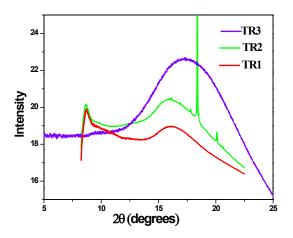


Fig. S11 Powder XRD patterns of [2]rotaxanes TR1, TR2 and TR3.

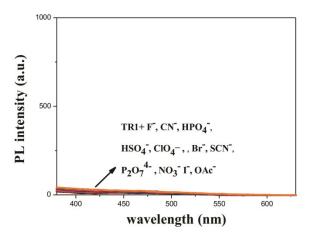
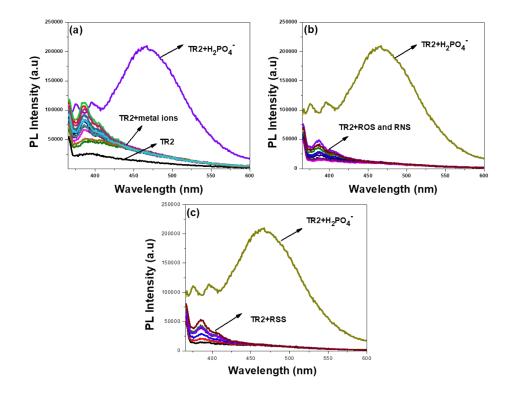



Fig. S12 Fluorescence spectra of [2]rotaxane TR1 (10 μ M) in the presence of various TBA salts in CH₃CN solution (10 μ M).

Fig. S13 Fluorescence spectra of [2]rotaxane **TR2** (10 μ M) in the presence of (a) metal ions, (b) ROS & RNS and (c) RSS in CH₃CN solutions in contrast to H₂PO₄⁻.

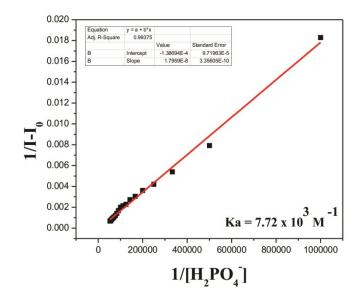


Fig. S14 Binding constant of [2]rotaxane TR2 for the titration of $H_2PO_4^-$ against the ratio of fluorescence response for chemosensor in CH₃CN (10 μ M).

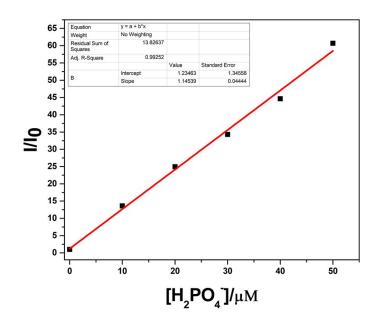


Fig. S15 Detection limit of [2]rotaxane TR2 in CH₃CN (10 μ M) upon increasing concentrations of H₂PO₄⁻.

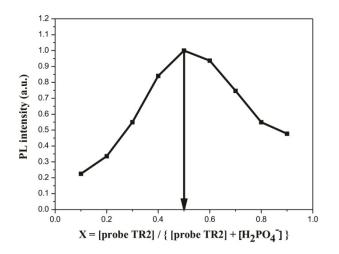
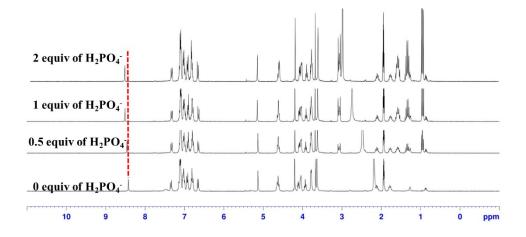
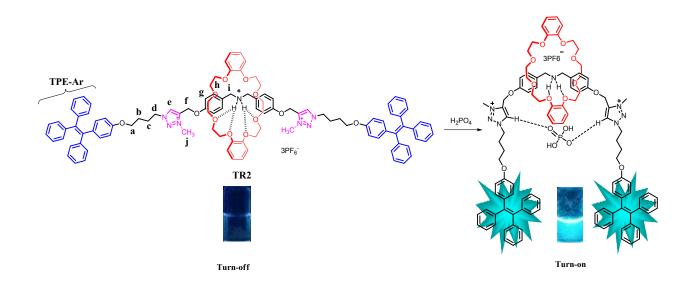
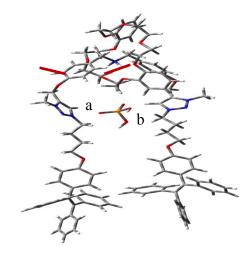
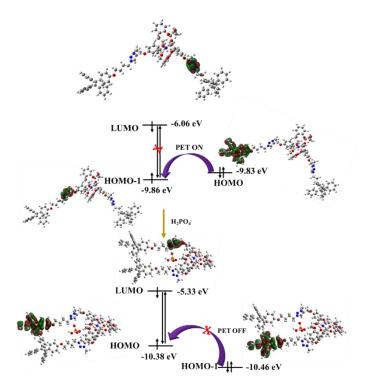
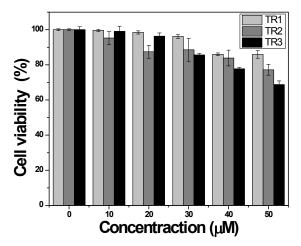



Fig. S16 Job's plots of complexes [2]rotaxane TR2-H₂PO₄⁻ in CH₃CN. The total concentration of [2]rotaxane TR2 and H₂PO₄⁻ was 50.0 μ M. The monitored wavelength was 480 nm.

Fig. S17 ¹H **NMR** spectra of compound [2]rotaxane **TR2** (10 mM) in the presence of TBA- $H_2PO_4^-$ in D_2O/CH_3CN .


Fig. S18 A possible proposed binding mechanisms for [2]rotaxane TR2 towards $H_2PO_4^-$ ion.

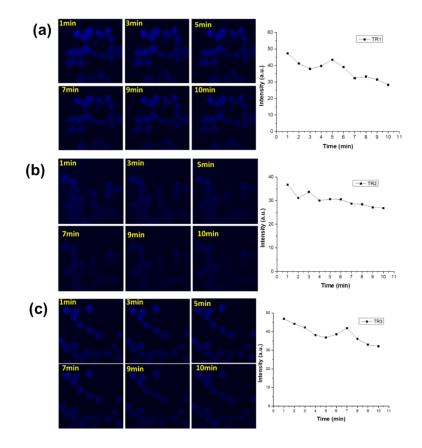

Fig. S19 Optimized chemical structures of complexes [2]rotaxane **TR2**-H₂PO₄⁻ at the PM6 level. [Selected H-bond lengths (a) C-H...O: 1.978 Å; (b) C-H...O: 1.850 Å

Fig. S20 Frontier molecular orbital diagram of [2]rotaxanes **TR2** and **TR2**- $H_2PO_4^-$ in gas phase at PM6 level.

Fig. S21 Relative cell viability values (%) of Raw 264.7 cells estimated by an MTT assay versus incubated with **TR1, TR2** and **TR2** at different concentrations (0–50 μ M) at 37 °C for 24 h.

Fig. S22 Photostability tests of [2]rotaxanes (20 μ M) (a) **TR1**, (b) **TR2** and (c) **TR3** in Raw 267.7 cells acquired at different scanning time. ($\lambda_{ex} = 380$ nm)

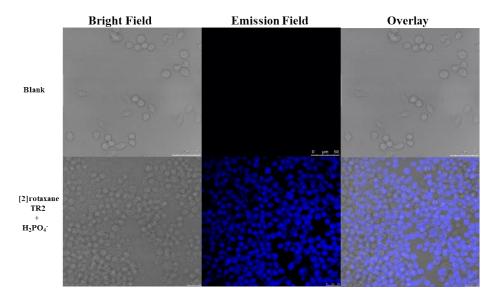


Fig. S23 Confocal microscopic images (with an excitation wavelength of $\lambda_{ex} = 360$ nm) of (top) RAW 264.7 cells incubated with [2]rotaxane TR2 (10 μ M) for 30 min and (bottom) further incubated with dihydrogen phosphate H₂PO₄⁻ (20 μ M) for 10 min; (left) bright- field transmission images, (center) emission-field images, and (right) overlay images.

Fig. S24 ¹H NMR (300 MHz, CD₃Cl) spectrum of compound S2.

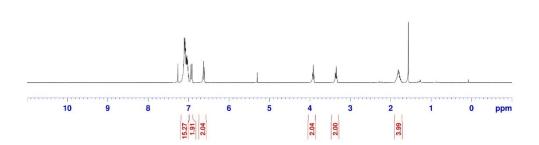


Fig. S26¹H NMR (300 MHz, CD₃Cl) spectrum of compound S3.

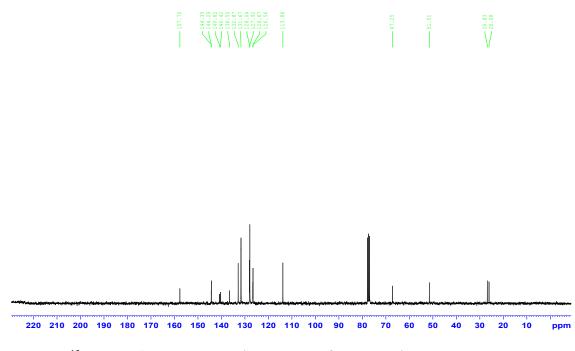


Fig. S27 ¹³C NMR (75 MHz, CD₃Cl) spectrum of compound S3.

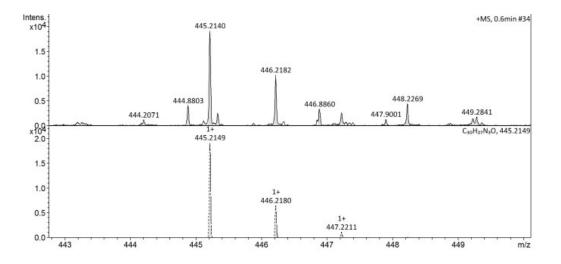


Fig. S28 HRMS ESI (+)-MS spectrum of compound S3.

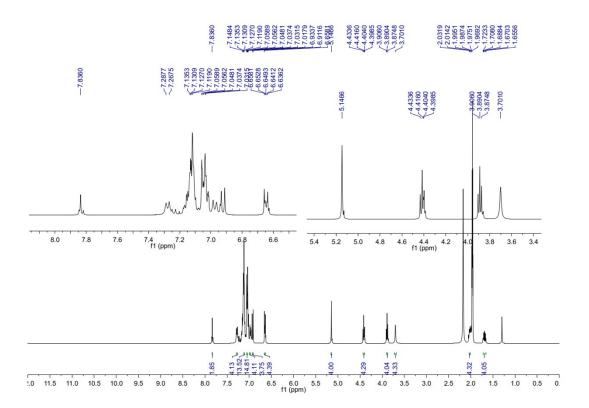
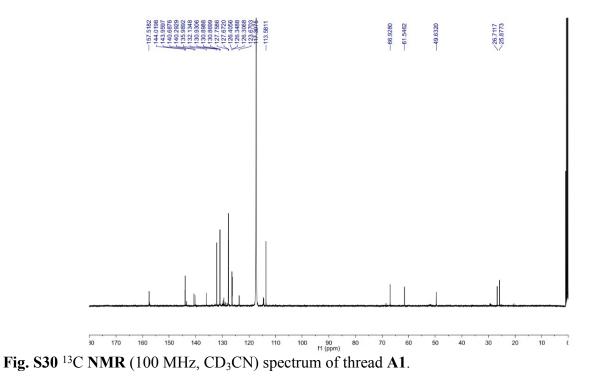



Fig. S29¹H NMR (400 MHz, CD₃CN) spectrum of compound A1.

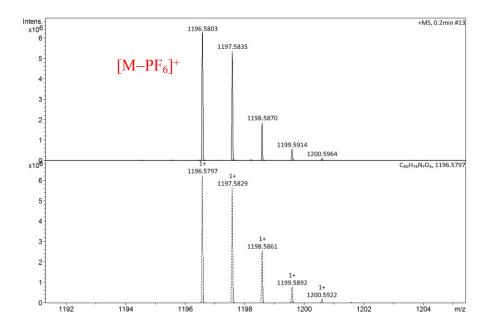


Fig. S31 HRMS ESI (+)-MS spectrum of thread A1.

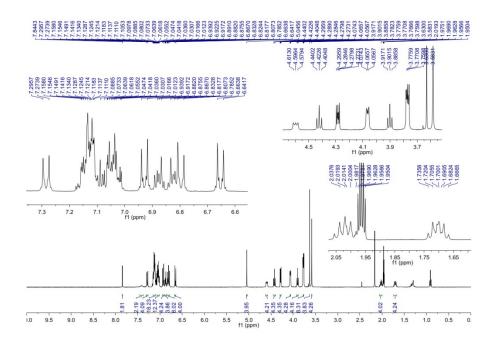


Fig. S32 ¹H NMR (400 MHz, CD₃CN) spectrum of compound TR1.

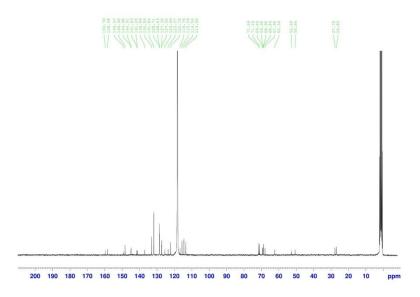


Fig. S33 ¹³C NMR (75 MHz, CD₃CN) spectrum of compound TR1.

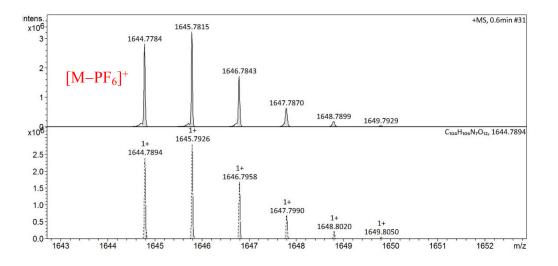
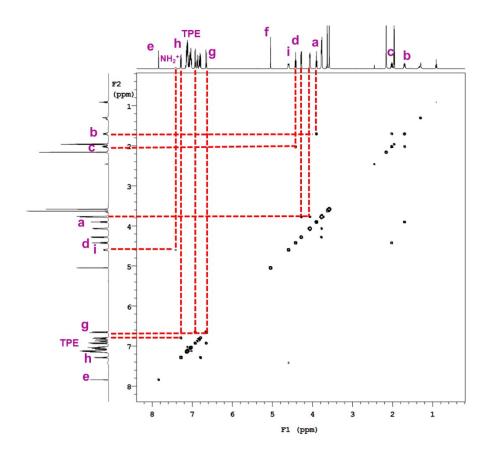



Fig. S34 HRMS ESI (+)-MS spectrum of compound TR1.

Fig. S35 ¹H-¹H COSY spectrum (500 MHz, 299.1 K, CD₃CN) of **TR1**.

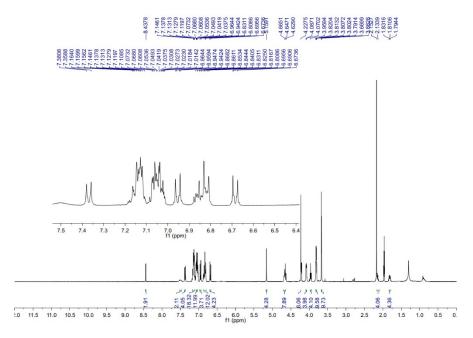


Fig. S36¹H NMR (400 MHz, CD₃CN) spectrum of compound TR2.

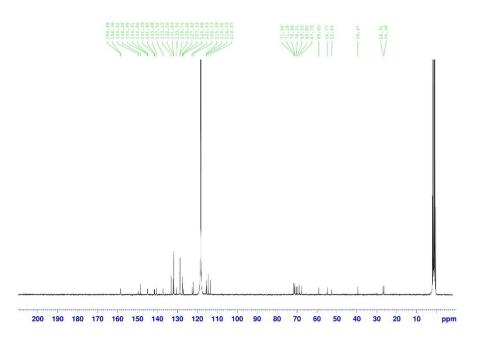


Fig. S37 ¹³C NMR spectrum of compound TR2.

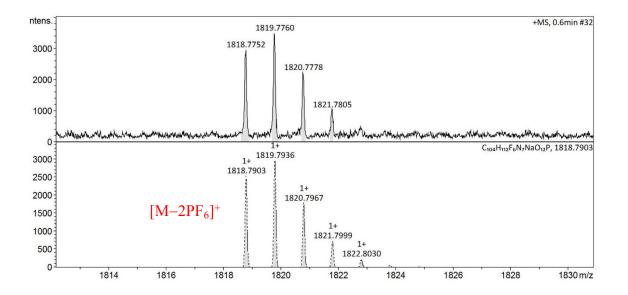


Fig. S38 HRMS ESI (+)-MS spectrum of compound TR2.

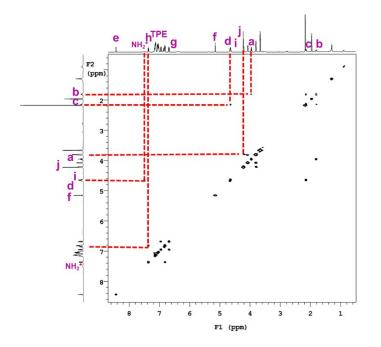


Fig. S39 ¹H-¹H COSY spectrum (500 MHz, 299.1 K, CD₃CN) of TR2.

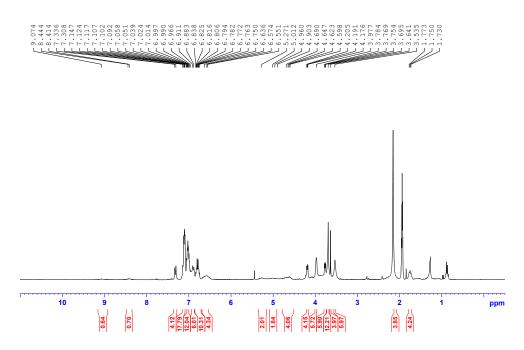


Fig. S40 ¹H NMR spectrum of compound TR3.

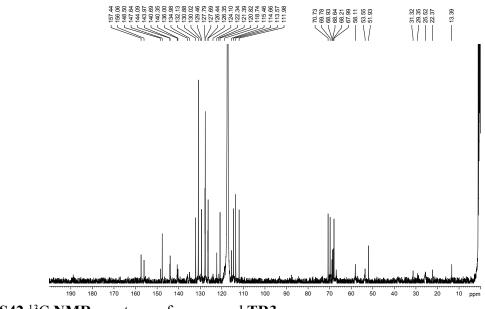


Fig. S42 ¹³C NMR spectrum of compound TR3.

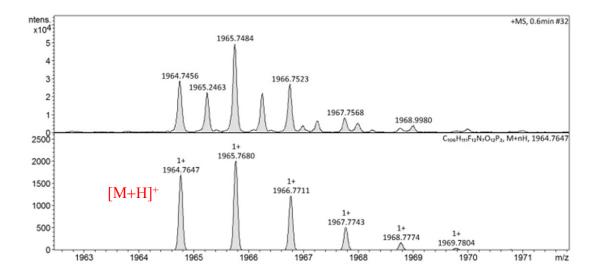
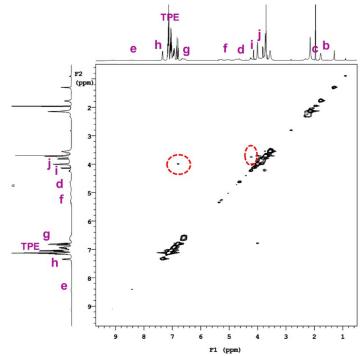



Fig. S42 HRMS ESI (+)-MS spectrum of compound TR3.

Fig. S43¹H-¹H ROESY spectrum (500 MHz, 300.1 K, CD₃CN) of **TR3**.

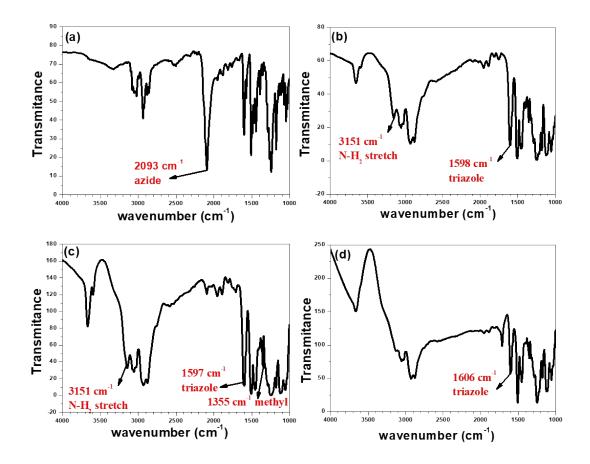


Fig. S44 FT-IR spectra of compounds (a) S3, (b) TR1, (c) TR2 and (d) TR3.

References

(S1) H. Zhou, J. Li, M. H. Chua, H. Yan, B. Z. Tang, J. Xu, Poly(acrylate) with a tetraphenylethene pendant with aggregation-induced emission (AIE) characteristics: highly stable AIE-active polymer nanoparticles for effective detection of nitro compounds. *Polym. Chem.*, 2014, **5**, 5628–5637.

(S2) Z.-J. Zhang, H.-Y. Zhang, H. Wang, Y. Liu, A twin-axial hetero[7]rotaxane. *Angew. Chem. Int. Ed.*, 2011, **50**, 10834–10838.