Supplementary Material

Reaction-based fluorescent silk probes with high sensitivity and selectivity to Hg²⁺ and Ag⁺ ions

Li Xiao^a, Kaiqi Liu^a, Lian Duan^{b*}, Xinjian Cheng^{a*}

^aSchool of Chemistry and Environmental Engineering, Wuhan Institute of

Technology, Wuhan, China, 430073

^bSchool of Textiles and Garments, Southwest University, Chongqing, 400715, PR

China

^{*}Corresponding author: Dr. Duan, <u>duan19850420@163.com</u>; Dr. Cheng, <u>chxj606@163.com</u>.

Scheme S1. Synthetic route of small molecule compounds

Figure S1. ¹H NMR spectra of small molecule compounds (a) A1, (b) BS1, (c) BI1, and (d) BI3

Figure S2. ¹H NMR spectra of small molecule compounds (a) A2, (b) BS2, (c) BI2, and (d) BI4

Figure S3. ¹H NMR spectra of small molecule compounds (a) A3, (b) A4, (c) BS3, and (d) BS4

Figure S4. FTIR spectrum of (a) BI3, (b) BI1, (c) BS1, and (d) A1

Figure S5. ESI-HRMS spectrum of BS1

Figure S6. ESI-HRMS spectrum of BS2

Figure S7. ESI-HRMS spectrum of BS3

Figure S8. ESI-HRMS spectrum of BS4

Table S1. Distribution of XPS spectra for untreated silk (S0, P0) and fluorescent silk (OSP, ASP)

Figure S11. SEM micrographs and partial enlarged photos of silk (a) un-degummed silk S0, (b) degummed silk P0, (c) fluorescent silk OSP, and (d) fluorescent silk ASP

Figure S12. TGA curves of un-degummed silk (S0), degummed silk (P0), fluorescent silk (OSP and ASP)

Figure S13. DSC curves of un-degummed silk (S0), degummed silk (P0), fluorescent silk (OSP and ASP)

Figure S14. FTIR spectra of (a) BS2+Ag⁺, (b) BS2+Hg²⁺, (c) BS2, (d) BS1+Hg²⁺, and (e) BS1

Figure. S15 (a) Fluorescence response of BS1 to other metal ions and bovine serum albumin in the presence of Hg²⁺ (b) Fluorescence response of BS2 to other metal ions and bovine serum albumin in the presence of Hg²⁺ (c) Fluorescence response of BS2 to other metal ions and bovine serum albumin in the presence of Ag⁺

	PO	OSP	ASP			
Initial Hg ²⁺ mg/L (C0)	351	351	351			
Remain Hg ²⁺ mg/L (C)	123	28.5	96.9			
Average quality of samples mg (m)	43.45	51.5	35.4			
Adsorption efficiency %.mg ⁻¹ (η)	1.49	1.78	2.05			
Hg ²⁺ content tested by XPS (%)	-	0.89	1.13			
C0 – C						

Table S2. Comparison of Hg²⁺ adsorption by untreated silk (P0) and fluorescent silk (OSP/ASP)

$$\eta = \frac{C0 - C}{C0 * m}$$

Synthesized in this work							
Sensor	LOD	Selectivity	Kinetics	Applications	Reference		
Cy-PT	0.18 μΜ	Excellent (Hg ²⁺)	Rapid response	Living cells and zebrafish	46		
OTA- DCM	0.14 µM	High (Hg ²⁺)	Rapid response	Living cells and zebrafish larvae	47		
TBBA	13.10 nM	Sensitive (Hg ²⁺)	-	Living cells and zebrafish	48		
NPPI	3.86 µM	High (Ag ⁺)	Rapid response	Living cells and zebrafish larvae	49		
BS4	0.25/0.83 μM	Sensitive (Ag ⁺ /Hg ²⁺)	-	Aqueous adsorbent	this work		

Table S3. Comparison and evaluation of the basic properties of the reported sensors and sensors synthesized in this work

Figure. S16 (a) Photographs of **BS1** (10 μ M) with heavy metal ion in DMF under natural light and (b) UV light. (c) Photographs of **BS2** (10 μ M) in DMF under natural light and (d) UV light

Scheme S2. Structural representation of the binding sites of (a) ASP-Hg²⁺, (b) ASP-Ag⁺