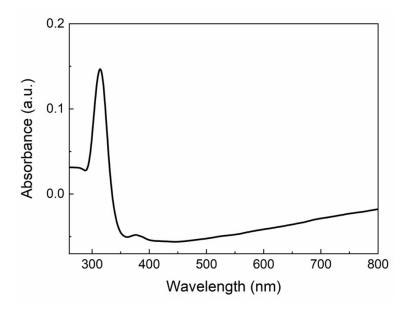
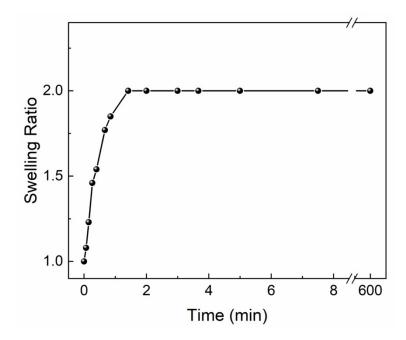
Supporting information

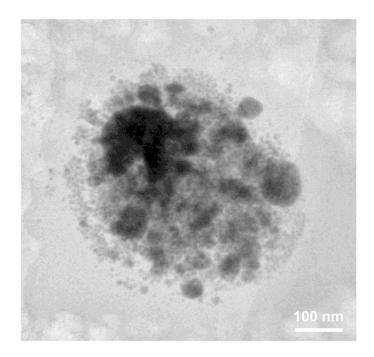
Reversible Data Encryption-Decryption using pH Stimuli-Responsive


Hydrogel

Hongjing Wen,^{ab} Xianzhi Zeng,^b Xiaoxuan Xu,^a Wanyi Li,^b Fei Xie,^b Zhong Xiong,^c Shichao Song,^b Bin Wang,^{*a} Xiangping Li^b and Yaoyu Cao^{*b}


^{a.} The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China.

^{b.} Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, P. R. China.


^{c.} College of Chemistry and Chemical Engineering and Institute of Marine Biobased Materials, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, State Key Laboratory of Bio-fibers and Ecotextiles, Qingdao University, Qingdao 266071, China.

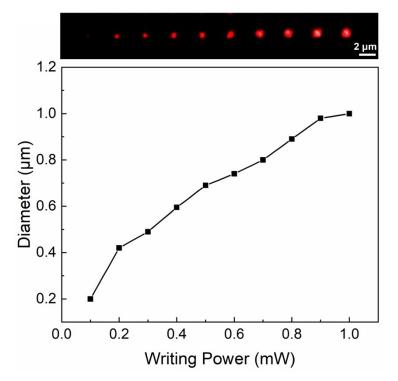

Fig. S1. The Ultraviolet–visible (UV-vis) absorption spectrum of pH-responsive hydrogel. Maximum absorption occurs at the wavelength of 313 nm.

Fig. S2. Swelling ratio of pH-responsive hydrogel in deionized water as a function of time. The time-evolution swelling ratio reflected the water absorption ability of the pH-responsive hydrogel, swelling equilibrium is reached in less than two minutes.

Fig. S3. TEM image of a single silver dot in pH-responsive hydrogel. The single silver dot is recorded at writing power of 0.3 mW and exposure time of 80 ms.

Fig. S4. Size characteristics of silver dots array with different writing powers. Dark-field image (upper) of silver dots array with different writing powers (from left to right: 0.1 mW, 0.2 mW, 0.3 mW, 0.4 mW, 0.5 mW, 0.6 mW, 0.7 mW, 0.8 mW, 0.9 mW, 1.0 mW) and the corresponding dot structure diameters (lower) with the increasing writing power.