Supporting information

A Visual Logic Alarm Sensor for Diabetic Patients towards Diabetic Polyneuropathy Based on Metal-Organic Framework Functionalized by Dual-Cation Exchange

Yu Zhang‡^a, Xianglong Qu‡^a and Bing Yan^{*a, b}

^a School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai

200092, China

^b School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China

Corresponding author Email addresses: byan@tongji.edu.cn (Bing Yan)

Figure S1 Packing view of the In-pdc layers stacked along *c* direction based on C4–H4…O4 and C5–H5…O2 hydrogen bonds.

Figure S2 The PXRD patterns of In-MOF and simulated one.

Figure S3 The SEM image and optical images of In-MOF.

Figure S4 N_2 adsorption/desorption isotherms of In-MOF.

Figure S55 Thermal gravimetric analysis curves for In-MOF.

1

Figure S6 PXRD of In-MOF after being immersed in common solvents.

Figure S7 PXRD of In-MOF after being immersed in the solutions of pH = 4-10.

Figure S8 PXRD of In-MOF after being immersed in the H_2O for 12-48h.

Figure S9 Excitation (black line) and emission (red line) spectra of H₂pdc.

Figure S10 Excitation (black line) and emission (red line) spectra of **In-MOF** (The inset is the corresponding CIE chromaticity diagram of **In-MOF**).

Figure S11 PXRD of Eu@In-MOF, Tb@In-MOF, Sm@In-MOF and Dy@In-MOF.

Figure S12 Corresponding CIE chromaticity diagram of (a) Eu@In-MOF; (b) Tb@In-MOF (c) Sm@In-

Figure S13 PXRD of In-MOF and Ru@In-MOF.

Figure S14 Excitation (black line) and emission (red line) spectra of Ru@In-MOF.

Figure S15 Energy dispersive analysis by X-rays (EDX) spectroscopy of Ru/Tb@In-MOF.

Figure S16 Excitation (black line) and emission (red line) spectra of **Ru/Tb@In-MOF** (The inset is the photo of In-MOF and Ru/Tb@In-MOF power).

Figure S17 PXRD patterns of In-MOF, Ru/Tb@In-MOF and Ru/Tb@In-MOF immersing into H₂O.

Figure S18 Emission spectra of Ru/Tb@In-MOF in different pH solutions.

Figure S19 Luminescence responses of **Ru/Tb@In-MOF** (I_{585nm}/I_{545nm}) toward other urine components with and without MMA.

Figure S20 (a)Variation of luminescent intensity of **Ru/Tb@In-MOF** with different immersion time in MMA; (b) The corresponding line chart.

Figure S21 The column diagram of the fluorescence intensity of **Ru/Tb@In-MOF** (I_{585nm}/I_{545nm}) after immersing into different concentrations of MMA.

Figure S22 PXRD patterns of In-MOF, Ru/Tb@In-MOF and Ru/Tb@In-MOF immersing into MMA.

Figure S24 Luminescence decay curves of Ru/Tb@In-MOF immersed in H₂O and MMA.

Complex	In-MOF	
Empirical formula	C ₁₆ H ₁₄ N ₃ O ₈ In	
Formula weight	491.03	
monoclinic		
Space group	R-3c	
<i>a /</i> Å	15.7001(4)	
<i>b</i> / Å	15.7001(4)	
<i>c /</i> Å	52.849(3)	
α/(°)	90	
β/(°)	90	
γ / (°)	120	
Volume / Å ³	11281.6(8)	
Z	18	
Calculated density / mg· m⁻³	1.179	
Absorption coefficient / mm ⁻¹	0.972	
F(000)	3906	
Crystal size / mm	$0.36 \times 0.24 \times 0.12$	
heta Range for data collection / (°)	3.09-27.573	
	-20<=h<=20	
Limiting indices	-20<=k<=20	
	-68<=l<=67	
	50685/2905	
Reflections collected / unique	[R(int)=0.0625]	
Data / restraints / parameters	2905/0/114	
Goodness-of-fit on F ²	1.050	
R1 [<i>I</i> > 2sigma(<i>I</i>)]	0.0518	
wR ₂ [/ > 2sigma(/)]	0.1904	
R ₁ [all data]	0.0650	
wR ₂ [all data]	0.2005	
Largest diff. peak and hole / $e \cdot Å^{-3}$	2.291 and -0.800	
CCDC	2023759	

Table S1 Crystal data and structure refinement for In-MOF

In-MOF		
In(1)-O(1)#1	2.157(4)	
In(1)-O(1)	2.157(4)	
In(1)-O(3)#2	2.199(4)	
In(1)-O(3)#3	2.199(4)	
In(1)-N(1)#2	2.269(4)	
In(1)-N(1)#3	2.269(4)	
O(1)#1-In(1)-O(1)	95.0(2)	
O(1)-In(1)-O(3)#3	83.75(16)	
O(1)-In(1)-O(3)#2	125.08(15)	
O(1)#1-In(1)-O(3)#3	125.07(15)	
O(1)#1-In(1)-O(3)#2	83.75(16)	
O(1)#1-In(1)-N(1)#3	86.30(16)	
O(1)-In(1)-N(1)#2	86.31(16)	
O(1)-In(1)-N(1)#3	152.07(16)	
O(1)#1-In(1)-N(1)#2	152.08(16)	
O(3)#3-In(1)-O(3)#2	139.6(2)	
O(3)#2-In(1)-N(1)#2	72.93(14)	
O(3)#2-In(1)-N(1)#3	82.82(15)	
O(3)#3-In(1)-N(1)#3	72.94(14)	
O(3)#3-In(1)-N(1)#2	82.83(15)	
N(1)#3-In(1)-N(1)#2	105.3(2)	

Table S2 Selected bond lengths [Å] for In-MOF

Symmetry transformations used to generate equivalent atoms: #1 - x + 4/3, -x + y + 2/3, -z + 7/6; #2 - y + 1, x - y + 1, z; #3 y + 1/3, x + 2/3, -z + 7/6.

Table S3 Repeated ICP-MS results of Ru/Tb@In-MOF.

Ru/Tb@TJU-12	Content of In	Content of Tb	Content of Ru
1	14.96%	5.27%	3.26%
2	15.15%	4.91%	3.57%
3	14.68%	5.05%	3.06%

Table S4 The luminescence decay times of Ru/Tb@In-MOF in H₂O and MMA.

Substance	Lifetimes(µs)
H ₂ O	858.53μs
MMA	10.31µs