## Supporting Information

## An Easy Access to Multi-State Redox-Active, Push-Pull Naphthalenediimides: Panchromatic Radical Anions and Supramolecular Networks

## Deepak Bansal and Pritam Mukhopadyay\*

<sup>a</sup>School of Physical Sciences, Jawaharlal Nehru University, Delhi -110067, India

## <u>Index</u>

|     |                                                                                                                          | Page No. |
|-----|--------------------------------------------------------------------------------------------------------------------------|----------|
| 1.  | Experimental                                                                                                             | 2 - 6    |
| 2.  | Figure S1. FTIR spectra of 1-3                                                                                           | 7        |
| 3.  | Figure S2-S7. <sup>1</sup> H, <sup>13</sup> C, APT and DEPT-135 of 1-3 in CDCl <sub>3</sub>                              | 8 - 13   |
| 4.  | Figure S8-S10. ESI-Mass of 1-3 in CHCl <sub>3</sub>                                                                      | 14 - 15  |
| 5.  | Figure S11 and S12. 1H, 13C of 4                                                                                         | 16       |
| 6.  | Figure S13. ESI-Mass of 4                                                                                                | 17       |
| 7.  | Figure S14. <sup>1</sup> H of 5                                                                                          | 17       |
| 8.  | Figure S15. ESI-Mass of 5                                                                                                | 18       |
| 9.  | Figure S16. FTIR spectra of 6-8                                                                                          | 19       |
| 10. | Figure S17. <sup>1</sup> H of 6 in CDCl <sub>3</sub>                                                                     | 20       |
| 11. | Figure S18-S21. <sup>1</sup> H and <sup>13</sup> C of 6-8 in <i>d</i> <sub>6</sub> -DMSO                                 | 20 - 22  |
| 12. | Figure S22-24. ESI-Mass of 6-8 in DMF                                                                                    | 23 - 24  |
| 13. | Figure S25. Cyclic voltammogram of 4 and 5                                                                               | 25       |
| 14. | Figure S26. Cyclic voltammogram of 6-8 in DCM                                                                            | 26       |
| 15. | Figure S27-S32. Normalized Uv-Vis absorption spectra of                                                                  | 27 - 30  |
|     | 1-3 and 6-8 in different solvents.                                                                                       |          |
| 16. | Figure S33. Uv-Vis-NIR spectra of 4 and 4 <sup>•-</sup> in DMF                                                           | 31       |
| 17. | Figure S34. Uv-Vis-NIR spectra of 1a and 1a <sup></sup> in DMF                                                           | 32       |
| 18. | Figure S35-S37. Uv-Vis-NIR spectra of 1-3 in presence of SbCl₅ in DCM.                                                   | 33-35    |
| 19. | Figure S38. ESR spectra of 1 <sup>,-</sup> , 2 <sup>,-</sup> and 3 <sup>,-</sup> in DMF                                  | 36       |
| 20. | Figure S36-S38. Time dependent Uv-Vis spectra of                                                                         | 37 - 38  |
|     | <b>1</b> • <sup>–</sup> , <b>2</b> • <sup>–</sup> and <b>3</b> • <sup>–</sup> in DMF.                                    |          |
| 21. | Table S1. Crystal data and structure refinement parameters for 6                                                         | 39       |
| 22. | <b>Table S2.</b> Spin density distribution data for <b>1</b> <sup></sup> , <b>2</b> <sup></sup> and <b>3</b> <sup></sup> | 40       |
|     | obtained from DFT calculations.                                                                                          |          |
| 23. | Table S3.         Weak interaction table for compound 6                                                                  | 41       |
| 24. | Computational study: Details and Coordinates                                                                             | 41 - 65  |

## **Experimental**

**General:** Chemicals were sourced either from Sigma-Aldrich, or TCI chemicals, India and were used as received. Thin layer chromatography (TLC) was carried out on aluminium plates coated with silica gel mixed with fluorescent indicator and was sourced from Merck, Germany. NMR ( $^{1}$ H,  $^{13}$ C) spectra were recorded on a Bruker 500 MHz spectrometer in CDCl<sub>3</sub> or DMSO- $d_{6}$  with TMS as a standard. Spin multiplicities are reported as a singlet (s), doublet (d), and triplet (t) with coupling constants (J) given in Hz, or multiplet (m). ESI-HRMS spectral data were obtained using a waters make ESI-MS model Synapt G2 high definition mass spectrometer. All the spectroscopic experiments were carried out in UV Grade solvents which was sourced from Spectrochem, India. The FTIR spectra were recorded with a Perkin–Elmer FTIR 2000 or spectrum–two spectrometer.

**Cyclic and Differential Pulse Voltammetry (CV/DPV):** CV and DPV were carried out using a computer controlled potentiostat (CHI 650C) and a standard three electrode arrangement that consisted of both platinum working and auxiliary electrodes and saturated calomel (SCE) as reference electrode.<sup>1</sup> All electrochemical measurements were carried out in Ar-purged DCM with n-Bu<sub>4</sub>NPF<sub>6</sub> as the supporting electrolyte. CV studies of the molecules 1-8 were performed in degassed DCM under Ar atmosphere and the scan rate for the measurements was typically 200-300 mV/s. DPV was carried out keeping peak amplitude 50 mV, peak width 0.01 sec, pulse period 0.05 sec and increment E at 20 mV.

**Theoretical calculations:** The ground-state geometry optimization was carried out applying the density functional theory (DFT) with the Becke three-parameter<sup>2</sup> hybrid exchange functional in concurrence with the Lee-Yang-Parr gradient-corrected correlation function  $(B3LYP \text{ functional})^3$  with the 6-311G++(d,p) basis set as implemented in Gaussian 09W.<sup>4</sup> All the geometries were optimized without any constrain. To reduce the calculation time axial group (C<sub>4</sub>H<sub>9</sub>) of all molecules has been replaced by methyl group.

**X-ray Crystallography:** The data for 6 was collected on Bruker Kappa Apex-CCD diffractometer equipped with graphite monochromatic Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å).<sup>5</sup> The frames were collected at 298 K. The data was processed with XCalibur S Saint,<sup>6</sup> and empirical absorption corrections were applied by using the spherical harmonic incorporated in the

SCALE3 ABSPACK scaling algorithm.<sup>5</sup> The structures were solved by direct methods using SIR-92<sup>7</sup> and refined by full-matrix least-squares refinement techniques on  $F^2$  by using SHELXL-2018<sup>8</sup> in the WinGX module.<sup>9</sup> All hydrogen atoms were fixed at the calculated positions were refined isotropically.

## Synthesis

## Ethyl-4-((2,7-dibutyl-9-(dimethylamino)-1,3,6,8-tetraoxo-1,2,3,6,7,8-

hexahydrobenzo[lmn][3,8]phenanthrolin-4-yl)amino)benzoate (1). A mixture of N,N-dibutyl-2,3-dibromo-naphthalene-1,4,5,8-tetracarboxylicacidbisimide (NDI-Br<sub>2</sub>) (0.1g, 0.19 mmol) and Ethyl-4-aminobenzoate (0.3g, 0.56 mmol) was dissolved in DMF (10 ml) and stirred at 80°C for 10 h. The temperature of the resulting red color reaction mixture was further increased to 140 °C and stirred for another 1h. To this hot anhy. K<sub>2</sub>CO<sub>3</sub> (1g) was added and reaction mixture was again stirred for another 1h resulting in the purple color solution. The reaction was stopped and allowed to attain room temperature. The residual solvent was removed under reduced pressure followed by addition of water. The compound was extracted from aqueous layer by CHCl<sub>3</sub> and washed with water several times. The organic layer was dried using rotatory evaporator and the resultant solid was purified by silica column chromatography (100-200 mesh) with CHCl<sub>3</sub>/Hexane as an eluent. Yield: 0.02 g (19.0 %). M. P. > 250°C. ESI-HRMS (CHCl<sub>3</sub>, m/z): calcd. 585.2708 For  $1 + H^+$ ; found 585.2785 (obs.). Anal. Calc. for C<sub>33</sub>H<sub>36</sub>N<sub>4</sub>O<sub>6</sub>: C, 67.79; H, 6.21; N, 9.58. Found: C, 67.65; H, 6.38; N, 9.14. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K, TMS): δ (ppm) = 11.35 (s, 1H), 8.70 (s, 1H), 8.51 (s, 1H), 8.153 (d, 2H), 7.43 (d, 2H), 4.43 (q, 2H), 4.26-4.18 (m, 4H), 3.20 (s, 6H), 1.78-1.70 (m, 4H), 1.57 (s, 3H), 1.52-1.43 (m, 4H), 1.04 (t, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, 298 K, TMS):  $\delta$  (ppm) = 131.51, 121.65, 44.14, 40.75, 30.37, 30.18, 20.43, 20.37, 13.85. FTIR spectrum (Zn-Se ATR, selected peaks, cm<sup>-1</sup>): 3190 (-NH), 1724 (-COOEt), 1682 and 1638 (C=O). Absorption spectrum [ $\lambda_{max}$ , nm, DCM ( $\epsilon$ x 10<sup>2</sup>, M<sup>-1</sup>cm<sup>-1</sup>)]: 598 (649), 340 (935), 330 (979).

### Ethyl-3-((2,7-dibutyl-9-(dimethylamino)-1,3,6,8-tetraoxo-1,2,3,6,7,8-

*hexahydrobenzo[lmn][3,8]phenanthrolin-4-yl)amino)benzoate* (**2**). A synthetic procedure similar to 1 was followed using following reagents (0.1g, 0.19 mmol) and Dimethyl 5-aminoisophthalate (0.3g, 0.56 mmol) and anhy. K<sub>2</sub>CO<sub>3</sub> (1g). Yield: 0.02g (18.0 %). M. P. 170°C. ESI-HRMS (CHCl<sub>3</sub>, m/z): calcd. 585.2708 for **2** + H<sup>+</sup>; found 585.2793 (obs.). Anal. Calc. for C<sub>33</sub>H<sub>36</sub>N<sub>4</sub>O<sub>6</sub>: C, 67.79; H, 6.21; N, 9.58. Found: C, 67.15; H, 6.98; N, 9.84. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K, TMS):  $\delta$  (ppm) = 11.24 (s, 1H), 8.49 (d, 2H), 8.03 (s, 1H), 7.97 (d,

1H), 7.62-7.54 (m, 2H), 4.41 (t, 2H), 4.26-4.16 (m, 4H), 3.19 (s, 6H), 1.78-1.68 (m, 4H), 1.52-1.42 (m, 7H), 1.02 (t, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, 298 K, TMS):  $\delta$  (ppm) = 166.43, 166.29, 165.85, 162.90, 162.51, 146.92, 139.02, 132.49, 129.94, 128.14, 126.87, 125.92, 125.28, 124.33, 122.30, 120.26, 119.61, 61.31, 59.53, 44.13, 40.71, 38.16, 31.94, 30.35, 22.70, 20.43, 14.32. FTIR spectrum (Zn-Se ATR, selected peaks, cm<sup>-1</sup>): 3248 (-NH), 1722 (-COOEt), 1685 and 1632 (C=O). Absorption spectrum [ $\lambda_{max}$ , nm, DCM ( $\varepsilon \times 10^2$ , M<sup>-1</sup>cm<sup>-1</sup>)]: 598 (1092), 366 (649), 347 (644).

#### dimethyl5-((2,7-dibutyl-9-(dimethylamino)-1,3,6,8-tetraoxo-1,2,3,6,7,8-

*hexahydrobenzo[lmn][3,8]phenanthrolin-4-yl)amino)isophthalate* (**3**). A synthetic procedure similar to **1** was followed using following reagents (0.1g, 0.19 mmol) and Ethyl-3-aminobenzoate (0.4g, 1.89 mmol) and anhy. K<sub>2</sub>CO<sub>3</sub> (1g). Yield: 0.02g (20.0 %). M. P. 227°C. ESI-HRMS (CHCl<sub>3</sub>, m/z): calcd 629.2606 for **3** + H<sup>+</sup>; found 629.2651 (obs.) Anal. Calc. for C<sub>34</sub>H<sub>36</sub>N<sub>4</sub>O<sub>8</sub>: C, 64.96; H, 5.77; N, 8.91. Found: C, 64.25; H, 5.42; N, 9.14. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K, TMS): δ (ppm) = 11.27 (s, 1H), 8.57 (s, 1H), 8.52 (s, 1H), 8.45 (s, 1H), 8.24 (s, 2H), 4.25-4.10 (d, 4H), 3.99 (s, 6H), 3.20 (s, 6H), 2.07-2.05 (m, 4H), 1.51-1.44 (m, 4H), 1.03-0.908 (m, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, 298 K, TMS): δ (ppm) = 165.61, 147.96, 132.43, 128.43, 119.28, 52.63, 44.16, 29.72, 20.37, 13.86. FTIR spectrum (Zn-Se ATR, selected peaks, cm<sup>-1</sup>): 3190 (-NH), 1726 (-COOMe), 1687and 1643 (C=O). Absorption spectrum [λ<sub>max</sub>, nm, DCM (ε x 10<sup>2</sup>, M<sup>-1</sup>cm<sup>-1</sup>)]: 594 (551), 366 (310), 349 (315).

#### Diethyl-4,4'-((2,7-dibutyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-

*hexahydrobenzo*[*lmn*][*3*,8]*phenanthroline-4*,9-*diyl*)*bis*(*azanediyl*))*dibenzoate* (**4**). A mixture of N,N-dibutyl-2,3-dibromo-naphthalene-1,4,5,8-tetracarboxylicacidbisimide (NDI-Br<sub>2</sub>) (0.1g, 0.19 mmol) and Ethyl-4-aminobenzoate (0.3g, 0.56 mmol) was dissolved in DMSO (10 ml) and stirred at 140°C for 10 h. To this hot anhy. K<sub>2</sub>CO<sub>3</sub> (1g) was added and stirred for another 2h. The reaction was stopped and allowed to attain room temperature. Further, water was added to the reaction mixture resulting in the formation of blue color precipitates. Solid compound was filtered and washed with methanol few times followed by air drying. The resultant solid was purified by silica column chromatography (100-200 mesh) with CHCl<sub>3</sub>/Hexane as an eluent. Yield: 0.03g (20.0 %). ESI-HRMS (CHCl<sub>3</sub>, m/z): calcd. 705.2919 for **4** + H<sup>+</sup>; found 705.2907 (obs.). Anal. Calc. for C<sub>40</sub>H<sub>40</sub>N<sub>4</sub>O<sub>8</sub>: C, 68.17; H, 5.72; N, 7.95. Found: C, 68.15; H, 5.81; N, 7.44. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K, TMS):  $\delta$  (ppm) = 11.25 (s, 2H), 8.612 (s, 2H), 8.06 (d, 4H), 7.33 (d, 4H), 4.34 (d, 4H), 4.09 (s, 4H), 1.64 (s, 4H), 1.50 (s, 4H), 1.35 (s, 6H), 0.91 (s, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, 298 K, TMS):  $\delta$  (ppm) 166.21,

165.88, 162.35, 145.82, 131.53, 127.01, 125.86, 122.57, 121.90, 120.82, 61.03, 40.51, 30.11, 20.42, 14.38, 13.81. Absorption spectrum [ $\lambda_{max}$ , nm, DCM ( $\epsilon \ge 10^2$ , M<sup>-1</sup>cm<sup>-1</sup>)]: 602 (553), 370 (410), 346 (1175).

#### 2,7-dibutyl-4,9-bis(dimethylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone

(5). A solution of N,N-dibutyl-2,3-dibromo-naphthalene-1,4,5,8-tetracarboxylicacidbisimide (NDI-Br<sub>2</sub>) (0.1g) in DMF (10 ml) was stirred at 80°C for 10 h. The temperature was raised to 140 °C followed by addition of anhy. K<sub>2</sub>CO<sub>3</sub> (1g). The reaction was allowed to stir for 24h. The reaction was stopped and reaction workup was performed similar to **1** to afford blue color compound. Yield: 0.006g (8%). ESI-HRMS (CHCl<sub>3</sub>, m/z): calcd. 465.2496 for **5** + H<sup>+</sup>; found 465.2403 (obs.). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K, TMS):  $\delta$  (ppm) = 8.46 (s, 2H), 4.22 (t, 4H), 3.19 (s, 12H), 1.73 (t, 4H), 1.46 (t, 4H), 1.01 (s, 6H). Absorption spectrum [ $\lambda_{max}$ , nm, DCM ( $\epsilon \ge 10^2$ , M<sup>-1</sup>cm<sup>-1</sup>]: 619 (869), 365 (513), 344 (406).

#### 4-((2,7-dibutyl-9-(dimethylamino)-1,3,6,8-tetraoxo-1,2,3,6,7,8-

*hexahydrobenzo*[*lmn*][*3*,8]*phenanthrolin-4-yl*)*amino*)*benzoic acid* (**6**). To the solution of **1** (0.05 g) in THF/H<sub>2</sub>O (1:1) was added NaOH (10 equiv.) followed by refluxing for 10h. The reaction was stopped and THF was removed under the reduced pressure. The solution was cooled and neutralized using 2N HCl solution while continuous monitoring using *p*H paper. The blue precipitates were formatted at the *p*H of around 4. The compound was filtered and washed with water 3-4 times. Yield: 0.04g (90.0 %). M. P > 250°C. ESI-HRMS (DMF, m/z): calcd 557.2395 for **6** + H<sup>+</sup>; found 557.2345 (obs.). Anal. Calc. for C<sub>31</sub>H<sub>32</sub>N<sub>4</sub>O<sub>6</sub>: C, 66.89; H, 5.79; N, 10.07. Found: C, 67.20; H, 5.48; N, 9.84. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K, TMS): δ (ppm) = 12.88 (s, 1H), 11.05 (d, 1H), 8.37 (dd, 2H), 8.02 (t, 2H), 7.52 (s, 2H), 4.05 (t, 2H), 3.32 (s, 6H), 1.61(q, 4H), 1.36 (q, 4H), 0.96 (t, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, 298 K, TMS): δ (ppm) = 167.17, 165.90, 162.42, 160.99, 151.27, 144.13, 143.51, 131.58, 126.79, 126.05, 124.05, 123.51, 121.62, 106.35, 104.53, 79.65, 43.93, 30.20, 20.30, 14.16. FTIR spectrum (Zn-Se ATR, selected peaks, cm<sup>-1</sup>): 3587 (-COOH), 3153 (-NH), 1685 and 1632 (C=O). Absorption Spectrum [λ<sub>max</sub>, nm, DCM (ε x 10<sup>2</sup>, M<sup>-1</sup>cm<sup>-1</sup>)]: 598 (861), 367 (684), 338 (1318).

### 3-((2,7-dibutyl-9-(dimethylamino)-1,3,6,8-tetraoxo-1,2,3,6,7,8-

*hexahydrobenzo*[*lmn*][*3*,8]*phenanthrolin-4-yl*)*amino*)*benzoic acid* (**7**). Compound **7** was synthesized in the similar manner to that of **6** using 2 (0.05 g) as a starting material. Yield: 0.04g (92.0 %). M. P > 250°C. ESI-HRMS (DMF, m/z): calcd. 557.2395 for **7** + H<sup>+</sup>; found 557.2301 (obs.). Anal. Calc. for  $C_{31}H_{32}N_4O_6$ : C, 66.89; H, 5.79; N, 10.07. Found: C, 66.49; H,

5.18; N, 9.77. <sup>1</sup>H NMR (500 MHz, d<sub>6</sub>-DMSO, 298 K, TMS):  $\delta$  (ppm) = 11.17 (t, 1H), 8.37 (t, 1H), 7.97 (s, 1H), 7.90 (s, 1H), 7.58 (s, 2H), 4.13 (dd, 4H), 3.16 (s, 6H), 1.68 (dd, 4H), 1.43 (m, 4H), 1.25 (t, 6H). FTIR spectrum (Zn-Se ATR, selected peaks, cm<sup>-1</sup>): 3542 (-COOH), 3235 (-NH), 1685 and 1640 (C=O). Absorption spectrum [ $\lambda_{max}$ , nm, DCM ( $\epsilon \times 10^2$ , M<sup>-1</sup>cm<sup>-1</sup>)]: 604 (144), 370 (40), 350 (60).

## 5-((2,7-dibutyl-9-(dimethylamino)-1,3,6,8-tetraoxo-1,2,3,6,7,8-

*hexahydrobenzo*[*lmn*][*3*,8]*phenanthrolin-4-yl*)*amino*)*isophthalic acid* (**8**). Compound 8 was synthesized in the similar manner to that of 6 using 3 (0.05 g) as a starting material. Yield: 0.04g (90.0 %). M. P > 250°C. ESI-HRMS (DMF, m/z): calcd. 601.2293 for **8** + H<sup>+</sup>; found 601.2271 (obs.). Anal. Calc. for C<sub>32</sub>H<sub>32</sub>N<sub>4</sub>O<sub>8</sub>: C, 63.99; H, 5.37; N, 9.33. Found: C, 64.15; H, 5.15; N, 9.10. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K, TMS): δ (ppm) = 11.02 (s, 1H), 8.31 (s, 2H), 8.20 (s, 1H), 8.07 (s, 1H), 3.73 (dd, 4H), 3.04 (s, 6H), 1.60 (dd, 4H), 1.38 (dd, 4H), 0.98 (t, 6H). FTIR spectrum (Zn-Se ATR, selected peaks, cm<sup>-1</sup>): 3564 (-COOH), 3248 (-NH), 1680 and 1640 (C=O). Absorption spectrum [ $\lambda_{max}$ , nm, DCM (ε x 10<sup>2</sup>, M<sup>-1</sup>cm<sup>-1</sup>)]: 595 (591), 366 (340), 349 (350).

## References

- 1. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910.
- 2. D. J. Becke, Chem. Phys., 1993, 98, 5648.
- 3. C. Lee, W. yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Li, X. Caricato, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.; Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Startmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 5. SMART: Bruker Molecular Analysis Research Tool, version 5.618, Bruker Analytical Xray Systems, 2000.
- 6. SAINT-NT, version 6.04, Bruker Analytical X-ray Systems, 2001.
- A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343.
- 8. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.



9. L. J. Farrugia, WinGX, version 1.64, University of Glasgow, 2003.

Figure S1. FT-IR spectra of 1 (blue traces), 2 (red traces) and 3 (purple traces).



Figure S2. 500 MHz <sup>1</sup>H NMR spectrum of **1** in  $CDCl_3$  at room temperature. \* represents residual solvent, TMS and H<sub>2</sub>O peaks.



Figure S3. 125 MHz  $^{13}$ C (bottom), APT (middle) and DEPT 135 (top) spectra of **1** in CDCl<sub>3</sub> at room temperature. \* represents residual solvent peak.



Figure S4. 500 MHz <sup>1</sup>H NMR spectrum of **2** in  $CDCl_3$  at room temperature. \* represents residual solvent, TMS and H<sub>2</sub>O peaks.



Figure S5. 125 MHz  $^{13}$ C (bottom), APT (middle) and DEPT 135 (top) spectra of **2** in CDCl<sub>3</sub> at room temperature. \* represents residual solvent peak.



Figure S6. 500 MHz <sup>1</sup>H NMR spectrum of **3** in CDCl<sub>3</sub> at room temperature. \* represents residual solvent, TMS and  $H_2O$  peaks.



Figure S7. 125 MHz <sup>13</sup>C (bottom), APT (middle) and DEPT 135 (top) spectra of **3** in CDCl<sub>3</sub> at room temperature. \* represents residual solvent peak.



Figure S8. ESI-HRMS of 1 in CHCl<sub>3</sub>.



Figure S9. ESI-HRMS of 2 in CHCl<sub>3</sub>.



Figure S10. ESI-HRMS of **3** in CHCl<sub>3</sub>.



Figure S11. 500 MHz <sup>1</sup>H NMR spectrum of **4** in CDCl<sub>3</sub> at room temperature. \* represents residual solvent, TMS and  $H_2O$  peaks.



Figure S12. 125 MHz  $^{13}$ C (bottom) spectrum of **4** in CDCl<sub>3</sub> at room temperature. \* represents residual solvent peak.



Figure S13. ESI-HRMS of 4 in CHCl<sub>3</sub>.



Figure S14. 125 MHz  $^{13}$ C (bottom) spectrum of **5** in CDCl<sub>3</sub> at room temperature. \* represents residual solvent peak.



Figure S15. ESI-HRMS of **5** in CHCl<sub>3</sub>.



Figure S16. FTIR spectra of **6** (blue traces), **7** (red traces) and **8** (purple traces).



Figure S17. 500 MHz <sup>1</sup>H NMR spectrum of **6** in CDCl<sub>3</sub> at room temperature. \* represents residual solvent,  $H_2O$  peaks.



Figure S18. 500 MHz <sup>1</sup>H NMR spectrum of **6** in  $d_6$ -DMSO at room temperature. \* represents residual solvent and H<sub>2</sub>O peaks.



Figure S19. 125 MHz  $^{13}$ C (bottom), APT (middle) and DEPT 135 (top) spectra of **6** in d<sub>6</sub>-DMSO at room temperature. \* represents residual solvent peak.



Figure S20. 500 MHz <sup>1</sup>H NMR spectrum of **7** in  $d_6$ -DMSO at room temperature. \* represents residual solvent and H<sub>2</sub>O peaks.



Figure S21. 500 MHz <sup>1</sup>H NMR spectrum of **8** in  $d_6$ -DMSO at room temperature. \* represents residual solvent and H<sub>2</sub>O peaks.



Figure S22. ESI-HRMS of 6 in DMF.



Figure S23. ESI-HRMS of 7 in DMF.



Figure S24. ESI-HRMS of 8 in DMF.



Figure S25. Cyclic voltammogram of **4** and **5**. Condition: 1 mM solution of **4** and **5** in DCM; 0.1 M Bu<sub>4</sub>NPF<sub>6</sub> at 298 K; scan rate, 200mV/s.



Figure S26. Cyclic voltammogram of **6-8**. Condition: 1 mM solution of **6-8** in DCM; 0.1 M  $Bu_4NPF_6$  at 298 K; scan rate, 200mV/s.



Figure S27. Normalized Uv-Vis absorption spectra of 1 in different solvents.



Figure S28. Normalized Uv-Vis absorption spectra of **2** in different solvents.



Figure S29. Normalized Uv-Vis absorption spectra of **3** in different solvents.



Figure S30. Normalized Uv-Vis absorption spectra of **6** in different solvents.



Figure S31. Normalized Uv-Vis absorption spectra of 7 in different solvents.



Figure S32. Normalized Uv-Vis absorption spectra of **8** in different solvents.



Figure S33. Uv-Vis-NIR spectra of **4** and **4**•- in DMF after the addition of 1M Na<sub>2</sub>S solution in Methanol. (All the solutions were prepared under ambient conditions).



Figure S34. Uv-Vis-NIR spectra of **1a** and **1a**<sup>--</sup> in DMF after the addition of 1M Na<sub>2</sub>S solution in Methanol. (All the solutions were prepared under ambient conditions).



Figure S35. Changes in the Uv-Vis-NIR spectra of **1** before and after addition of  $SbCl_5$  in DCM. (All the solutions were prepared under ambient conditions).



Figure S36. Changes in the Uv-Vis-NIR spectra of 2 before and after addition of SbCl<sub>5</sub> in DCM. (All the solutions were prepared under ambient conditions).



Figure S37. Changes in the Uv-Vis-NIR spectra of **3** before and after addition of  $SbCl_5$  in DCM. (All the solutions were prepared under ambient conditions).



Figure S38. ESR spectra of 1<sup>•-</sup>, 2<sup>•-</sup> and 3<sup>•-</sup> in DMF. All solutions were prepared under ambient conditions.



Figure S39. Time dependent Uv-Vis spectra of  $2^{\bullet-}$  in DMF displaying the reversible changes in absorption from  $2^{\bullet-} \rightarrow 2$ .



Figure S40. Time dependent Uv-Vis spectra of  $3^{\bullet-}$  in DMF displaying the reversible changes in absorption from  $3^{\bullet-} \rightarrow 3$ .



Figure S41. Time dependent Uv-Vis spectra of 1<sup>•-</sup> in DMF displaying the changes in absorption profile.

| Compound                                  | 6                                                                             |
|-------------------------------------------|-------------------------------------------------------------------------------|
| Formula                                   | C <sub>32</sub> H <sub>33</sub> Cl <sub>3</sub> N <sub>4</sub> O <sub>6</sub> |
| Formula Wt.                               | 675.97                                                                        |
| T (K)                                     | 295(2) K                                                                      |
| System                                    | Monoclinic                                                                    |
| Space group                               | P 2 <sub>1</sub> /n                                                           |
| a (Å)                                     | 15.0200 (10)                                                                  |
| b (Å)                                     | 10.8841 (7)                                                                   |
| c (Å)                                     | 20.8248 (13)                                                                  |
| α (°)                                     | 90                                                                            |
| β (°)                                     | 108.162 (2)                                                                   |
| γ (°)                                     | 90                                                                            |
| V (Å <sup>3</sup> )                       | 3234.8 (4)                                                                    |
| Z                                         | 4                                                                             |
| $ ho_{\text{calc}}(\text{mg}/\text{m}^3)$ | 1.388                                                                         |
| μ (mm <sup>-1</sup> )                     | 0.333                                                                         |
| F (000)                                   | 1408                                                                          |
| Goodness-of-fit (GOF) on $F^2$            | 1.085                                                                         |
| Final R indices                           | $R_1 = 0.0726, wR_2 = 0.2272$                                                 |
| $[I > 2\sigma(I)]$                        |                                                                               |
| R indices (all data)                      | $R_1 = 0.0969, wR_2 = 0.2449$                                                 |
| CCDC                                      | 1899200                                                                       |

Table S1. Crystal data and structural refinement parameters for 6.

| Atoms | 1•-       | 2•-       | Atoms | 3         |
|-------|-----------|-----------|-------|-----------|
| C1    | 0.035813  | 0.041703  | C1    | 0.039845  |
| C2    | 0.053894  | 0.056104  | C2    | 0.053355  |
| C3    | -0.031419 | -0.027557 | C3    | -0.032685 |
| C4    | 0.089365  | 0.081287  | C4    | 0.087590  |
| C5    | 0.038115  | 0.044032  | C5    | 0.041365  |
| C6    | 0.007084  | 0.003880  | C6    | 0.004891  |
| C7    | -0.017503 | -0.019722 | C7    | -0.015703 |
| C8    | 0.041520  | 0.041946  | C8    | 0.041274  |
| C9    | 0.184899  | 0.182802  | C9    | 0.183616  |
| C10   | 0.051707  | 0.051701  | C10   | 0.052417  |
| C11   | 0.052891  | 0.051424  | C11   | 0.051303  |
| C12   | 0.064218  | 0.051532  | C12   | 0.058166  |
| C13   | 0.039450  | 0.032373  | C13   | 0.034434  |
| C14   | 0.111043  | 0.134226  | C14   | 0.122599  |
| O17   | 0.058522  | 0.060139  | 017   | 0.059715  |
| O18   | 0.059510  | 0.063902  | 018   | 0.062304  |
| 019   | 0.076883  | 0.073369  | 019   | 0.074919  |
| O20   | 0.064424  | 0.062609  | O20   | 0.063178  |
| C21   | 0.001039  | 0.001069  | C21   | 0.001080  |
| C25   | -0.000121 | -0.000030 | C25   | -0.000065 |
| N29   | -0.020229 | -0.021649 | N29   | -0.021019 |
| N30   | -0.030060 | -0.029158 | N30   | -0.029635 |
| N31   | 0.020696  | 0.030412  | N31   | 0.026548  |
| N32   | 0.038967  | 0.035707  | N32   | 0.037003  |
| C34   | -0.006173 | -0.003441 | C34   | -0.002660 |
| C35   | 0.009052  | 0.003954  | C35   | 0.002948  |
| C36   | 0.006032  | 0.006981  | C36   | 0.011743  |
| C37   | 0.004377  | 0.002432  | C37   | 0.002147  |
| C39   | -0.002209 | -0.001091 | C39   | -0.001950 |
| C41   | 0.010009  | 0.006406  | C41   | 0.008500  |
| C42   | -0.004563 | -0.004437 | C42   | -0.004629 |
| C46   | 0.002021  | 0.002239  | C46   | 0.002282  |
| C52   | -0.000432 | 0.000368  | C50   | 0.000845  |
| O53   | 0.000601  | -0.000145 | O51   | -0.000217 |
| O54   |           | -0.000104 | 052   | -0.000112 |
| C55   |           | -0.000053 | C53   | -0.000728 |
| C58   |           | 0.000036  | 054   | -0.000215 |
| O52   | 0.002137  |           | 055   | -0.000010 |
| C54   | -0.000076 |           | C57   | 0.000011  |
| C57   | -0.000018 |           | C61   | 0.000262  |

Table S2. Spin density distribution data for 1<sup>•-</sup>, 2<sup>•-</sup> and 3<sup>•-</sup> obtained from DFT calculations.

| Atoms      | DA    | D-HA  | ∠ D-HA |
|------------|-------|-------|--------|
| N3-H3O3    | 2.642 | 2.070 | 137    |
| С28-Н28О4  | 3.289 | 2.402 | 159    |
| С30-Н30СО2 | 2.744 | 1.964 | 137    |
| C30-H30bO3 | 3.368 | 2.564 | 141    |
| O6-H1O5    | 2.618 | 2.151 | 116    |

Table S3. Weak interaction table for compound **6**.

## **DFT calculations**

Opt: B3LYP/6-311++g(d,p)

scrf=(cpcm, solvent=dichloromethane) geom=connectivity scf=xqc

[1]

| Calculation 7     | Гуре    | FOPT          |               |  |
|-------------------|---------|---------------|---------------|--|
| Calculation I     | Method  | RB3LY         | RB3LYP        |  |
| Basis Set         |         | 6-311++G(d,p) |               |  |
| Charge            |         | 0             |               |  |
| Spin              |         | Singlet       |               |  |
| Energy (RB3       | SLYP)   | -1714.2       | 27401793 a.u. |  |
| <b>RMS Gradie</b> | nt Norm | 0.00002       | 1476 a.u.     |  |
| Imaginary F       | req     |               |               |  |
| Dipole Momo       | ent     | 5.5696        | Debye         |  |
| Point Group       |         | C1            |               |  |
| Symbol            | Х       | Y             | Z             |  |
| С                 | 3.57433 | -2.61088      | -0.22806      |  |
| С                 | 3.55517 | -1.16139      | 0.02871       |  |
| С                 | 2.28807 | -0.51813      | 0.05338       |  |
| С                 | 1.08628 | -1.26893      | 0.13237       |  |
| С                 | 1.12762 | -2.75109      | 0.17941       |  |
| С                 | 4.7417  | -0.37692      | 0.07892       |  |
| С                 | 2.16711 | 0.89177       | -0.00288      |  |
| С                 | 3.36324 | 1.64469       | -0.11604      |  |
| С                 | 4.59243 | 1.03123       | -0.07925      |  |
| С                 | 3.3181  | 3.12089 -     | 0.23118       |  |

| С | 0.85219 2.99531 -0.02583   |
|---|----------------------------|
| С | 0.90305 1.53249 0.01817    |
| С | -0.28143 0.75528 0.0919    |
| С | -0.14296 -0.65406 0.16669  |
| Н | -1.017 -1.27929 0.27263    |
| Н | 5.46448 1.66739 -0.11519   |
| 0 | 0.12304 -3.43133 0.34624   |
| 0 | 4.5526 -3.22446 -0.63502   |
| 0 | -0.19771 3.64108 0.06199   |
| 0 | 4.32472 3.80389 -0.35934   |
| С | 1.9408 5.16657 -0.25598    |
| Н | 2.9342 5.56583 -0.42953    |
| Н | 1.27445 5.44157 -1.07249   |
| Н | 1.53647 5.55999 0.67688    |
| С | 2.45359 -4.78894 -0.16408  |
| Н | 2.56086 -5.06768 -1.21393  |
| Н | 3.31694 -5.15584 0.38686   |
| Н | 1.53875 -5.21387 0.23583   |
| Ν | 2.37387 -3.32724 -0.02706  |
| Ν | 2.05005 3.70162 -0.17817   |
| Ν | -1.51534 1.35154 0.13739   |
| Ν | 5.9911 -0.88456 0.30842    |
| Н | -1.4739 2.3642 0.24159     |
| С | -2.78627 0.77146 -0.01079  |
| С | -3.04693 -0.27838 -0.90523 |
| С | -3.84933 1.3241 0.72152    |
| С | -4.33472 -0.7784 -1.03303  |
| Н | -2.25278 -0.68363 -1.5183  |
| С | -5.13589 0.82761 0.57978   |
| Н | -3.65284 2.13863 1.40919   |
| С | -5.39391 -0.23872 -0.29208 |
| С | 7.18751 -0.10702 -0.00773  |

| 7.06462 0.42979 -0.9477    |
|----------------------------|
| 7.4442 0.60628 0.7857      |
| 8.02158 -0.79936 -0.12712  |
| 6.22328 -2.00852 1.21111   |
| 6.52764 -2.9091 0.67443    |
| 7.00875 -1.72441 1.91747   |
| 5.32108 -2.23312 1.77856   |
| -4.5352 -1.58586 -1.72575  |
| -6.74795 -0.81848 -0.46952 |
| -7.00461 -1.74708 -1.21089 |
| -7.67483 -0.20847 0.28647  |
| -9.03023 -0.71598 0.18342  |
| -9.35022 -0.63691 -0.85852 |
| -9.02409 -1.77374 0.45836  |
| -9.90108 0.10569 1.10855   |
| -9.89433 1.16042 0.82219   |
| -10.93147 -0.25656 1.05377 |
| -9.56413 0.02129 2.14481   |
| -5.94404 1.25799 1.15693   |
|                            |

# [2]

| <b>Calculation Type</b>   | FOPT                |
|---------------------------|---------------------|
| <b>Calculation Method</b> | RB3LYP              |
| Basis Set                 | 6-311++G(d,p)       |
| Charge                    | 0                   |
| Spin                      | Singlet             |
| Energy (RB3LYP)           | -1714.27219007 a.u. |
| <b>RMS Gradient Norm</b>  | 0.00000501 a.u.     |
| Imaginary Freq            |                     |
| <b>Dipole Moment</b>      | 5.2785 Debye        |
| Point Group               | C1                  |
|                           |                     |
|                           |                     |

| Symbol | Х       | Y Z               |
|--------|---------|-------------------|
| С      | 3.3408  | -2.30776 -0.17184 |
| С      | 3.06206 | -0.88193 0.06444  |

| С | 1.70525 -0.46254 0.01322   |
|---|----------------------------|
| С | 0.64486 -1.40629 0.02887   |
| С | 0.93291 -2.86037 0.09078   |
| С | 4.09512 0.09118 0.17012    |
| С | 1.35132 0.90685 -0.05987   |
| С | 2.40785 1.85089 -0.11424   |
| С | 3.71947 1.45369 -0.00731   |
| С | 2.12043 3.29834 -0.24354   |
| С | -0.29658 2.75751 -0.17175  |
| С | -0.00213 1.32512 -0.1131   |
| С | -1.04108 0.35829 -0.10459  |
| С | -0.67008 -1.00822 -0.01351 |
| Н | -1.43148 -1.77239 0.0426   |
| Н | 4.47236 2.22792 -0.00253   |
| 0 | 0.04946 -3.70125 0.20258   |
| 0 | 4.43155 -2.74802 -0.5116   |
| 0 | -1.44346 3.21755 -0.14828  |
| 0 | 3.00303 4.14194 -0.32214   |
| С | 0.42158 5.08174 -0.36106   |
| Н | 1.34132 5.64308 -0.48496   |
| Н | -0.23633 5.24042 -1.21446  |
| Н | -0.09339 5.40098 0.54521   |
| С | 2.60388 -4.64406 -0.14651  |
| Н | 2.82271 -4.90191 -1.18428  |
| Н | 3.48082 -4.85794 0.46083   |
| Н | 1.75128 -5.21782 0.20171   |
| Ν | 2.26895 -3.2171 -0.0326    |
| Ν | 0.77194 3.65638 -0.26433   |
| Ν | -2.3578 0.73108 -0.143     |
| Ν | 5.39812 -0.20094 0.4689    |
| Н | -2.50287 1.73514 -0.05366  |
| С | -3.49278 -0.07326 -0.37632 |

| С | -3.51137 -1.09501 -1.33597 |
|---|----------------------------|
| С | -4.66352 0.22027 0.33082   |
| С | -4.67476 -1.82845 -1.55659 |
| Н | -2.6275 -1.30175 -1.92581  |
| С | -5.83328 -0.50515 0.08986  |
| Н | -4.65706 1.01189 1.06845   |
| С | -5.83763 -1.54196 -0.8501  |
| С | 6.46387 0.7638 0.20609     |
| Н | 6.30165 1.27205 -0.74378   |
| Н | 6.55943 1.51071 1.00452    |
| Н | 7.40595 0.219 0.13473      |
| С | 5.76439 -1.26854 1.39517   |
| Н | 6.24277 -2.10731 0.88582   |
| Н | 6.45185 -0.85637 2.13972   |
| Н | 4.88235 -1.63912 1.91593   |
| Н | -4.67353 -2.6162 -2.30047  |
| Н | -6.74728 -2.10214 -1.02241 |
| С | -7.09376 -0.21086 0.8236   |
| 0 | -8.13323 -0.82 0.68054     |
| 0 | -6.97912 0.8223 1.68541    |
| С | -8.24595 1.00445 2.32326   |
| Н | -8.98881 1.22346 1.58495   |
| Н | -8.51452 0.10969 2.84497   |
| С | -8.15453 2.17317 3.32192   |
| Н | -7.87855 3.06635 2.80138   |
| Н | -9.10449 2.31435 3.79367   |
| Н | -7.41703 1.95085 4.0646    |

[3]

| Calculation Type          | FOPT                |
|---------------------------|---------------------|
| <b>Calculation Method</b> | RB3LYP              |
| Basis Set                 | 6-311++G(d,p)       |
| Charge                    | 0                   |
| Spin                      | Singlet             |
| Energy (RB3LYP)           | -1902.89101569 a.u. |
| <b>RMS Gradient Norm</b>  | 0.00000867 a.u.     |
| Imaginary Freq            |                     |
| <b>Dipole Moment</b>      | 8.0797 Debye        |
| Point Group               | C1                  |

| Symbol | Х        | Y        | Ζ        |
|--------|----------|----------|----------|
| С      | 3.3408   | -2.30776 | -0.17184 |
| С      | 3.06206  | -0.88193 | 0.06444  |
| С      | 1.70525  | -0.46254 | 0.01322  |
| С      | 0.64486  | -1.40629 | 0.02887  |
| С      | 0.93291  | -2.86037 | 0.09078  |
| С      | 4.09512  | 0.09118  | 0.17012  |
| С      | 1.35132  | 0.90685  | -0.05987 |
| С      | 2.40785  | 1.85089  | -0.11424 |
| С      | 3.71947  | 1.45369  | -0.00731 |
| С      | 2.12043  | 3.29834  | -0.24354 |
| С      | -0.29658 | 2.75751  | -0.17175 |
| С      | -0.00213 | 1.32512  | -0.1131  |
| С      | -1.04108 | 0.35829  | -0.10459 |
| С      | -0.67008 | -1.00822 | -0.01351 |
| Н      | -1.43148 | -1.77239 | 0.0426   |
| Н      | 4.47236  | 2.22792  | -0.00253 |
| 0      | 0.04946  | -3.70125 | 0.20258  |
| 0      | 4.43155  | -2.74802 | -0.5116  |
| 0      | -1.44346 | 3.21755  | -0.14828 |
| 0      | 3.00303  | 4.14194  | -0.32214 |
| С      | 0.42158  | 5.08174  | -0.36106 |
| Н      | 1.34132  | 5.64308  | -0.48496 |

| Н | -0.23633 5.24042 -1.21446  |
|---|----------------------------|
| Н | -0.09339 5.40098 0.54521   |
| С | 2.60388 -4.64406 -0.14651  |
| Н | 2.82271 -4.90191 -1.18428  |
| Н | 3.48082 -4.85794 0.46083   |
| Н | 1.75128 -5.21782 0.20171   |
| Ν | 2.26895 -3.2171 -0.0326    |
| Ν | 0.77194 3.65638 -0.26433   |
| Ν | -2.3578 0.73108 -0.143     |
| Ν | 5.39812 -0.20094 0.4689    |
| Н | -2.50287 1.73514 -0.05366  |
| С | -3.49278 -0.07326 -0.37632 |
| С | -3.51137 -1.09501 -1.33597 |
| С | -4.66352 0.22027 0.33082   |
| С | -4.67476 -1.82845 -1.55659 |
| Н | -2.6275 -1.30175 -1.92581  |
| С | -5.83328 -0.50515 0.08986  |
| Н | -4.65706 1.01189 1.06845   |
| С | -5.83763 -1.54196 -0.8501  |
| С | 6.46387 0.7638 0.20609     |
| Н | 6.30165 1.27205 -0.74378   |
| Н | 6.55943 1.51071 1.00452    |
| Н | 7.40595 0.219 0.13473      |
| С | 5.76439 -1.26854 1.39517   |
| Н | 6.24277 -2.10731 0.88582   |
| Н | 6.45185 -0.85637 2.13972   |
| Н | 4.88235 -1.63912 1.91593   |
| С | -7.12155 -0.16266 0.861    |
| 0 | -8.24033 -0.67069 0.79926  |
| 0 | -6.94377 0.8643 1.72999    |
| С | -4.67301 -2.94812 -2.61391 |
| 0 | -5.57512 -3.70746 -2.96486 |
|   |                            |

| 0 | -3.46809 -3.07774 -3.22447 |
|---|----------------------------|
| Н | -6.72809 -2.1093 -1.02363  |
| С | -8.1599 1.1516 2.42524     |
| Н | -7.99891 1.96142 3.10581   |
| Н | -8.91795 1.42321 1.72062   |
| Н | -8.47283 0.28515 2.96951   |
| С | -3.50684 -4.12519 -4.19722 |
| Н | -2.55776 -4.19266 -4.6867  |
| Н | -3.72512 -5.05394 -3.71277 |
| Н | -4.26664 -3.91274 -4.92004 |

# [4]

| Calculation Type         | FOPT                |
|--------------------------|---------------------|
| Calculation Method       | <b>RB3LYP</b>       |
| Basis Set                | 6-311++G(d,p)       |
| Charge                   | 0                   |
| Spin                     | Singlet             |
| Energy (RB3LYP)          | -2134.04381438 a.u. |
| <b>RMS Gradient Norm</b> | 0.00000413 a.u.     |
| Imaginary Freq           |                     |
| Dipole Moment            | 0.0008 Debye        |
| Point Group              | C1                  |

| Symbol | Х        | Y        | Z        |
|--------|----------|----------|----------|
| С      | 2.08857  | -0.91126 | -1.3646  |
| С      | 1.68954  | 0.42553  | -0.86752 |
| С      | 0.32576  | 0.63658  | -0.5363  |
| С      | -0.58921 | -0.44803 | -0.48516 |
| С      | -0.13631 | -1.83452 | -0.76741 |
| С      | 2.58281  | 1.5155   | -0.83013 |
| С      | -0.1777  | 1.9283 - | 0.23865  |
| С      | 0.72632  | 3.01627  | -0.29884 |
| С      | 2.0569   | 2.80347  | -0.58016 |
| С      | 0.27032  | 4.39864  | -0.02804 |
| С      | -1.99379 | 3.49348  | 0.40501  |

| С | -1.54317 2.13783 0.08161   |
|---|----------------------------|
| С | -2.44046 1.0397 0.09003    |
| С | -1.91151 -0.25242 -0.17713 |
| Н | -2.55091 -1.12056 -0.11654 |
| Н | 2.72586 3.65589 -0.58001   |
| 0 | -0.87841 -2.79937 -0.65744 |
| 0 | 3.18368 -1.04913 -1.90553  |
| 0 | -3.14775 3.75791 0.75787   |
| 0 | 1.02048 5.36212 -0.08924   |
| С | -1.58476 5.88858 0.62161   |
| Н | -0.76856 6.5913 0.49408    |
| Н | -2.40444 6.13615 -0.05208  |
| Н | -1.95024 5.91756 1.64781   |
| С | 1.64677 -3.30401 -1.60754  |
| Н | 1.69228 -3.37194 -2.69574  |
| Н | 2.6413 -3.47464 -1.20127   |
| Н | 0.94688 -4.03829 -1.22284  |
| Ν | 1.1783 -1.97062 -1.19881   |
| Ν | -1.07523 4.54362 0.31105   |
| Ν | -3.76204 1.21032 0.39707   |
| Ν | 3.95734 1.45078 -1.04978   |
| Н | -3.98002 2.14471 0.74234   |
| С | -4.83887 0.32426 0.22658   |
| С | -4.93767 -0.56087 -0.858   |
| С | -5.89344 0.39297 1.15112   |
| С | -6.05169 -1.37756 -0.98805 |
| Н | -4.16509 -0.58897 -1.61467 |
| С | -7.00916 -0.41775 1.00788  |
| Н | -5.82428 1.08052 1.98621   |
| С | -7.0972 -1.32248 -0.05895  |
| Н | -7.81156 -0.3583 1.73093   |
| Н | -6.12819 -2.05684 -1.82771 |

| С | -8.26652 -2.22105 -0.24942  |
|---|-----------------------------|
| 0 | -8.37223 -3.02085 -1.1603   |
| 0 | -9.20501 -2.05798 0.6981    |
| С | -10.39191 -2.89304 0.6057   |
| Н | -10.87471 -2.70052 -0.35438 |
| Н | -10.08043 -3.93909 0.62922  |
| С | -11.29039 -2.54288 1.77268  |
| Н | -11.58901 -1.49273 1.73849  |
| Н | -12.19364 -3.15667 1.73003  |
| Н | -10.79114 -2.7354 2.72496   |
| Н | 4.33739 0.73174 -1.63162    |
| С | 4.84868 2.43949 -0.42618    |
| С | 5.33517 3.51082 -1.17588    |
| С | 5.20799 2.30669 0.91501     |
| С | 6.18132 4.44871 -0.58462    |
| Н | 5.05233 3.61481 -2.23344    |
| С | 6.0536 3.24533 1.50687      |
| Н | 4.82451 1.46247 1.50608     |
| С | 6.5404 4.31617 0.75729      |
| Н | 6.56533 5.29283 -1.17564    |
| Н | 6.33641 3.14059 2.56448     |
| С | 7.47465 5.35198 1.40987     |
| 0 | 7.90531 5.41615 2.56051     |
| 0 | 7.85334 6.32316 0.54106     |
| С | 8.71825 7.26363 1.18321     |
| Н | 9.59255 6.75934 1.53844     |
| Н | 8.20624 7.71369 2.00795     |
| С | 9.12825 8.3545 0.17647      |
| Н | 9.81267 9.03162 0.64333     |
| Н | 9.59821 7.89978 -0.67044    |
| Н | 8.25872 8.89002 -0.14296    |

[5]

| Calculation Type                                                                               | FOPT                                                                      |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| <b>Calculation Method</b>                                                                      | <b>RB3LYP</b>                                                             |
| Basis Set                                                                                      | 6-311++G(d,p)                                                             |
| Charge                                                                                         | 0                                                                         |
| Spin                                                                                           | Singlet                                                                   |
| Energy (RB3LYP)                                                                                | -1294.50436157 a.u.                                                       |
| <b>RMS Gradient Norm</b>                                                                       | 0.00000427 a.u.                                                           |
| Imaginary Freq                                                                                 |                                                                           |
| <b>Dipole Moment</b>                                                                           | 3.7599 Debye                                                              |
| Point Group                                                                                    | C1                                                                        |
| Spin<br>Energy (RB3LYP)<br>RMS Gradient Norm<br>Imaginary Freq<br>Dipole Moment<br>Point Group | Singlet<br>-1294.50436157 a.<br>0.00000427 a.u.<br><br>3.7599 Debye<br>C1 |

| Symbol | Х        | Y         | Ζ        |
|--------|----------|-----------|----------|
| С      | 3.3408 - | 2.30776 - | 0.17184  |
| С      | 3.06206  | -0.88193  | 0.06444  |
| С      | 1.70525  | -0.46254  | 0.01322  |
| С      | 0.64486  | -1.40629  | 0.02887  |
| С      | 0.93291  | -2.86037  | 0.09078  |
| С      | 4.09512  | 0.09118   | 0.17012  |
| С      | 1.35132  | 0.90685   | -0.05987 |
| С      | 2.40785  | 1.85089   | -0.11424 |
| С      | 3.71947  | 1.45369   | -0.00731 |
| С      | 2.12043  | 3.29834   | -0.24354 |
| С      | -0.29658 | 2.75751   | -0.17175 |
| С      | -0.00213 | 1.32512   | -0.1131  |
| С      | -1.04108 | 0.35829   | -0.10459 |
| С      | -0.67008 | -1.00822  | -0.01351 |
| Н      | -1.43148 | -1.77239  | 0.0426   |
| Н      | 4.47236  | 2.22792   | -0.00253 |
| 0      | 0.04946  | -3.70125  | 0.20258  |
| 0      | 4.43155  | -2.74802  | -0.5116  |
| 0      | -1.44346 | 3.21755   | -0.14828 |
| 0      | 3.00303  | 4.14194   | -0.32214 |
| С      | 0.42158  | 5.08174   | -0.36106 |

| Н | 1.34132 5.64308 -0.48496   |
|---|----------------------------|
| Н | -0.23633 5.24042 -1.21446  |
| Н | -0.09339 5.40098 0.54521   |
| С | 2.60388 -4.64406 -0.14651  |
| Н | 2.82271 -4.90191 -1.18428  |
| Н | 3.48082 -4.85794 0.46083   |
| Н | 1.75128 -5.21782 0.20171   |
| Ν | 2.26895 -3.2171 -0.0326    |
| Ν | 0.77194 3.65638 -0.26433   |
| Ν | -2.3578 0.73108 -0.143     |
| Ν | 5.39812 -0.20094 0.4689    |
| С | -3.49278 -0.07326 -0.37632 |
| С | 6.46387 0.7638 0.20609     |
| Н | 6.30165 1.27205 -0.74378   |
| Н | 6.55943 1.51071 1.00452    |
| Н | 7.40595 0.219 0.13473      |
| С | 5.76439 -1.26854 1.39517   |
| Н | 6.24277 -2.10731 0.88582   |
| Н | 6.45185 -0.85637 2.13972   |
| Н | 4.88235 -1.63912 1.91593   |
| Н | -3.26104 -1.09232 -0.14673 |
| Н | -4.2985 0.25798 0.24496    |
| Н | -3.77977 0.0044 -1.40419   |
| С | -2.5672 2.18037 -0.01404   |
| Н | -1.99669 2.55108 0.81179   |
| Н | -2.25172 2.6677 -0.91286   |
| Н | -3.60561 2.37724 0.15283   |

[6]

| Calculation Type<br>Calculation Method<br>Basis Set<br>Charge<br>Spin<br>Energy (RB3LYP)<br>RMS Gradient Norm |                  | FOPT<br>RB3LYP<br>6-311++G(d,p)<br>0<br>Singlet<br>-1635.63571809 a.u.<br>0.00000957 a.u. |  |
|---------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------|--|
| Dipole M                                                                                                      | y r req<br>oment | <br>6.6581 Debye                                                                          |  |
| Point Gro                                                                                                     | oup              | C1                                                                                        |  |
| Symbol                                                                                                        | Х                | Y Z                                                                                       |  |
| С                                                                                                             | 2.14971 -1.2     | 24134 -1.0129                                                                             |  |
| С                                                                                                             | 1.72648 0.1      | 1441 -0.70204                                                                             |  |
| С                                                                                                             | 0.34424 0.3      | 39155 -0.47429                                                                            |  |
| С                                                                                                             | -0.58368 -0.0    | 68081 -0.36555                                                                            |  |
| С                                                                                                             | -0.13458 -2.0    | 09294 -0.49787                                                                            |  |
| С                                                                                                             | 2.62522 1.2      | 2347 -0.74226                                                                             |  |
| С                                                                                                             | -0.16884 1.7     | 70826 -0.34206                                                                            |  |
| С                                                                                                             | 0.7448 2.7       | 8459 -0.46905                                                                             |  |
| С                                                                                                             | 2.08781 2.5      | 54379 -0.65646                                                                            |  |
| С                                                                                                             | 0.28668 4.1      | 19096 -0.36977                                                                            |  |
| С                                                                                                             | -2.01061 3.3     | 33658 0.03473                                                                             |  |
| С                                                                                                             | -1.54838 1.9     | 95205 -0.11388                                                                            |  |
| С                                                                                                             | -2.4533 0.8      | 6133 -0.02728                                                                             |  |
| С                                                                                                             | -1.92099 -0.4    | 45456 -0.14112                                                                            |  |
| Н                                                                                                             | -2.56163 -1.     | 32013 -0.034                                                                              |  |
| Н                                                                                                             | 2.74996 3.4      | 40297 -0.70913                                                                            |  |
| 0                                                                                                             | -0.8973 -3.0     | 03814 -0.35007                                                                            |  |
| 0                                                                                                             | 3.26712 -1.5     | 53138 -1.41759                                                                            |  |
| 0                                                                                                             | -3.18427 3.0     | 64198 0.28895                                                                             |  |
| 0                                                                                                             | 1.04662 5.1      | 1421 -0.49116                                                                             |  |
| С                                                                                                             | -1.59359 5.7     | 73844 0.01588                                                                             |  |
| Н                                                                                                             | -0.75969 6.4     | 41738 -0.14108                                                                            |  |
| Н                                                                                                             | -2.37813 5.9     | 91339 -0.72246                                                                            |  |

| Н | -2.02118 | 5.87689  | 1.01068  |
|---|----------|----------|----------|
| С | 1.69081  | -3.63565 | -1.08269 |
| Н | 1.97249  | -3.74768 | -2.13191 |
| Н | 2.57256  | -3.82719 | -0.46953 |
| Н | 0.88636  | -4.32107 | -0.82933 |
| Ν | 1.20674  | -2.27135 | -0.83444 |
| Ν | -1.0799  | 4.36897  | -0.12002 |
| Ν | -3.78353 | 1.07915  | 0.20193  |
| Ν | 4.0061   | 1.15933  | -0.8954  |
| Н | -3.99805 | 2.06031  | 0.39765  |
| С | -4.8564  | 0.16928  | 0.13567  |
| С | -4.95345 | -0.82086 | -0.85312 |
| С | -5.90324 | 0.31923  | 1.0533   |
| С | -6.06535 | -1.66909 | -0.89    |
| Н | -4.18297 | -0.92417 | -1.60626 |
| С | -7.02269 | -0.5161  | 0.99834  |
| Н | -5.85786 | 1.08221  | 1.82335  |
| С | -7.10448 | -1.52288 | 0.03349  |
| С | 4.59523  | 2.39833  | -1.42333 |
| Н | 3.90631  | 2.86138  | -2.09851 |
| Н | 4.80529  | 3.06634  | -0.6143  |
| Н | 5.50292  | 2.16912  | -1.94147 |
| С | 4.98379  | 0.30911  | -0.20105 |
| Н | 5.38642  | -0.40561 | -0.88805 |
| Н | 5.77479  | 0.91744  | 0.18516  |
| Н | 4.50183  | -0.20338 | 0.60515  |
| Н | -7.82074 | -0.38369 | 1.69868  |
| Н | -6.12092 | -2.43747 | -1.63256 |
| С | -8.31884 | -2.46722 | -0.0383  |
| 0 | -8.55559 | -3.3957  | -0.80994 |
| 0 | -9.24199 | -2.19229 | 0.91754  |
| Н | -9.99569 | -2.801   | 0.84998  |

[7]

| Calculation Type<br>Calculation Method<br>Basis Set<br>Charge<br>Spin Singlet<br>Energy (RB3LYP)<br>RMS Gradient Norm<br>Imaginary Freq<br>Dipole Moment |             | FOPT<br>RB3LYP<br>6-311++G(d,p)<br>0<br>Singlet<br>-1635.63351651 a.u.<br>0.00000249 a.u.<br><br>5.2576 Debye |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Point Gro                                                                                                                                                | oup C1      | C1                                                                                                            |
| Symbol                                                                                                                                                   | Х           | Y Z                                                                                                           |
| С                                                                                                                                                        | 2.14971 -1  | .24134 -1.0129                                                                                                |
| С                                                                                                                                                        | 1.72648 0   | 0.1441 -0.70204                                                                                               |
| С                                                                                                                                                        | 0.34424 0   | 0.39155 -0.47429                                                                                              |
| С                                                                                                                                                        | -0.58368 -0 | 0.68081 -0.36555                                                                                              |
| С                                                                                                                                                        | -0.13458 -2 | 2.09294 -0.49787                                                                                              |
| С                                                                                                                                                        | 2.62522 1   | .2347 -0.74226                                                                                                |
| С                                                                                                                                                        | -0.16884 1  | 1.70826 -0.34206                                                                                              |
| С                                                                                                                                                        | 0.7448 2.   | .78459 -0.46905                                                                                               |
| С                                                                                                                                                        | 2.08781 2   | 2.54379 -0.65646                                                                                              |
| С                                                                                                                                                        | 0.28668 4   | .19096 -0.36977                                                                                               |
| С                                                                                                                                                        | -2.01061 3  | 3.33658 0.03473                                                                                               |
| С                                                                                                                                                        | -1.54838 1  | .95205 -0.11388                                                                                               |
| С                                                                                                                                                        | -2.4533 0   | .86133 -0.02728                                                                                               |
| С                                                                                                                                                        | -1.92099 -0 | 0.45456 -0.14112                                                                                              |
| Н                                                                                                                                                        | -2.56163 -  | 1.32013 -0.034                                                                                                |
| Н                                                                                                                                                        | 2.74996 3   | 3.40297 -0.70913                                                                                              |
| 0                                                                                                                                                        | -0.8973 -3  | 3.03814 -0.35007                                                                                              |
| 0                                                                                                                                                        | 3.26712 -1  | 1.53138 -1.41759                                                                                              |
| 0                                                                                                                                                        | -3.18427    | 3.64198 0.28895                                                                                               |
| 0                                                                                                                                                        | 1.04662 5   | 5.1421 -0.49116                                                                                               |
| С                                                                                                                                                        | -1.59359 5  | 5.73844 0.01588                                                                                               |
| Н                                                                                                                                                        | -0.75969    | 5.41738 -0.14108                                                                                              |
| Н                                                                                                                                                        | -2.37813    | 5.91339 -0.72246                                                                                              |

| Н | -2.02118 | 5.87689  | 1.01068  |
|---|----------|----------|----------|
| С | 1.69081  | -3.63565 | -1.08269 |
| Н | 1.97249  | -3.74768 | -2.13191 |
| Н | 2.57256  | -3.82719 | -0.46953 |
| Н | 0.88636  | -4.32107 | -0.82933 |
| Ν | 1.20674  | -2.27135 | -0.83444 |
| Ν | -1.0799  | 4.36897  | -0.12002 |
| Ν | -3.78353 | 1.07915  | 0.20193  |
| Ν | 4.0061   | 1.15933  | -0.8954  |
| Н | -3.99805 | 2.06031  | 0.39765  |
| С | -4.8564  | 0.16928  | 0.13567  |
| С | -4.95345 | -0.82086 | -0.85312 |
| С | -5.90324 | 0.31923  | 1.0533   |
| С | -6.06535 | -1.66909 | -0.89    |
| Н | -4.18297 | -0.92417 | -1.60626 |
| С | -7.02269 | -0.5161  | 0.99834  |
| Н | -5.85786 | 1.08221  | 1.82335  |
| С | -7.10448 | -1.52288 | 0.03349  |
| С | 4.59523  | 2.39833  | -1.42333 |
| Н | 3.90631  | 2.86138  | -2.09851 |
| Н | 4.80529  | 3.06634  | -0.6143  |
| Н | 5.50292  | 2.16912  | -1.94147 |
| С | 4.98379  | 0.30911  | -0.20105 |
| Н | 5.38642  | -0.40561 | -0.88805 |
| Н | 5.77479  | 0.91744  | 0.18516  |
| Н | 4.50183  | -0.20338 | 0.60515  |
| Н | -6.12092 | -2.43747 | -1.63256 |
| Н | -7.95257 | -2.17451 | 0.00169  |
| С | -8.17129 | -0.32553 | 2.0063   |
| 0 | -9.22837 | -0.94294 | 2.12851  |
| 0 | -7.9333  | 0.69236  | 2.87157  |
| Н | -8.67149 | 0.79076  | 3.49491  |

[8]

| Calculation Type<br>Calculation Method<br>Basis Set<br>Charge<br>Spin Singlet<br>Energy (RB3LYP)<br>RMS Gradient Norm<br>Imaginary Freq<br>Dipole Moment |                | FOPT<br>RB3LYP<br>6-311++G(d,p)<br>0<br>Singlet<br>-1824.27231009 a.u.<br>0.00001238 a.u.<br><br>5.4482 Debye |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------|
| Point Gro<br>Symbol                                                                                                                                      | oup<br>X       | C1<br>Y Z                                                                                                     |
| C                                                                                                                                                        | 2 14971 -1 24  | 134 -1 0129                                                                                                   |
| C                                                                                                                                                        | 1.72648 0.14   | 41 -0.70204                                                                                                   |
| C                                                                                                                                                        | 0.34424 0.39   | 0155 -0.47429                                                                                                 |
| C                                                                                                                                                        | -0.58368 -0.68 | 8081 -0.36555                                                                                                 |
| C                                                                                                                                                        | -0.13458 -2.09 | 9294 -0.49787                                                                                                 |
| С                                                                                                                                                        | 2.62522 1.23   | 347 -0.74226                                                                                                  |
| С                                                                                                                                                        | -0.16884 1.70  | )826 -0.34206                                                                                                 |
| С                                                                                                                                                        | 0.7448 2.784   | 459 -0.46905                                                                                                  |
| С                                                                                                                                                        | 2.08781 2.54   | 379 -0.65646                                                                                                  |
| С                                                                                                                                                        | 0.28668 4.19   | 0096 -0.36977                                                                                                 |
| С                                                                                                                                                        | -2.01061 3.33  | 3658 0.03473                                                                                                  |
| С                                                                                                                                                        | -1.54838 1.95  | 5205 -0.11388                                                                                                 |
| С                                                                                                                                                        | -2.4533 0.86   | 133 -0.02728                                                                                                  |
| С                                                                                                                                                        | -1.92099 -0.45 | 5456 -0.14112                                                                                                 |
| Н                                                                                                                                                        | -2.56163 -1.32 | 2013 -0.034                                                                                                   |
| Н                                                                                                                                                        | 2.74996 3.40   | 0297 -0.70913                                                                                                 |
| 0                                                                                                                                                        | -0.8973 -3.03  | 8814 -0.35007                                                                                                 |
| 0                                                                                                                                                        | 3.26712 -1.53  | 3138 -1.41759                                                                                                 |
| 0                                                                                                                                                        | -3.18427 3.64  | 4198 0.28895                                                                                                  |
| 0                                                                                                                                                        | 1.04662 5.14   | -0.49116                                                                                                      |
| С                                                                                                                                                        | -1.59359 5.73  | 3844 0.01588                                                                                                  |
| Н                                                                                                                                                        | -0.75969 6.41  | 1738 -0.14108                                                                                                 |
| Н                                                                                                                                                        | -2.37813 5.91  | 1339 -0.72246                                                                                                 |

| Н | -2.02118 5.87689 1.01068   |
|---|----------------------------|
| С | 1.69081 -3.63565 -1.08269  |
| Н | 1.97249 -3.74768 -2.13191  |
| Н | 2.57256 -3.82719 -0.46953  |
| Н | 0.88636 -4.32107 -0.82933  |
| Ν | 1.20674 -2.27135 -0.83444  |
| Ν | -1.0799 4.36897 -0.12002   |
| Ν | -3.78353 1.07915 0.20193   |
| Ν | 4.0061 1.15933 -0.8954     |
| Н | -3.99805 2.06031 0.39765   |
| С | -4.8564 0.16928 0.13567    |
| С | -4.95345 -0.82086 -0.85312 |
| С | -5.90324 0.31923 1.0533    |
| С | -6.06535 -1.66909 -0.89    |
| Н | -4.18297 -0.92417 -1.60626 |
| С | -7.02269 -0.5161 0.99834   |
| Н | -5.85786 1.08221 1.82335   |
| С | -7.10448 -1.52288 0.03349  |
| Н | -7.95807 -2.18667 -0.01697 |
| С | -8.09562 -0.29334 2.00966  |
| 0 | -8.06528 0.56619 2.86671   |
| 0 | -9.12858 -1.1572 1.8794    |
| Н | -9.7627 -0.92648 2.57842   |
| С | -6.19642 -2.73965 -1.91975 |
| 0 | -7.13369 -3.50593 -2.00099 |
| 0 | -5.14723 -2.77856 -2.77593 |
| Н | -5.32824 -3.50919 -3.39013 |
| С | 4.59523 2.39833 -1.42333   |
| Н | 3.90631 2.86138 -2.09851   |
| Н | 4.80529 3.06634 -0.6143    |
| Н | 5.50292 2.16912 -1.94147   |
| С | 4.98379 0.30911 -0.20105   |

| Н | 5.38642 | -0.40561 | -0.88805 |
|---|---------|----------|----------|
| Н | 5.77479 | 0.91744  | 0.18516  |
| Н | 4.50183 | -0.20338 | 0.60515  |

[1]--

| Calculation                     | Туре       | F       | FOPT                    |                 |   |
|---------------------------------|------------|---------|-------------------------|-----------------|---|
| Calculation Method<br>Basis Set |            | τ       | UB3LYP<br>6-311++G(d,p) |                 |   |
|                                 |            | 6       |                         |                 |   |
| Charge                          |            | -       | 1                       |                 |   |
| Spin                            |            | Ι       | Double                  | t               |   |
| Energy (UB                      | B3LYP)     | -       | 1714.4                  | 0294500 a.u.    | • |
| KMS Grad                        | ent Norm   | U       | .00000                  | 477 <b>a.u.</b> |   |
| Dipole Mon                      | nent       | -       | 5.7128                  | Dehve           |   |
| Point Grou                      | D          | (       | C1                      | Debye           |   |
| Symbol                          | X          | Y       | Ζ                       |                 |   |
| С                               | 3.62427 -2 | 2.58315 | -0.231                  | 8               |   |
| С                               | 3.58475 -  | 1.13302 | 0.017                   | 04              |   |
| С                               | 2.30699 -( | 0.51306 | 0.070                   | 88              |   |
| С                               | 1.1224 -1  | .28552  | 0.1850                  | )7              |   |
| С                               | 1.1933 -2  | 2.76611 | 0.2448                  | 39              |   |
| С                               | 4.75754 -0 | 0.32712 | 0.033                   | 05              |   |
| С                               | 2.15858 (  | 0.89427 | 0.011                   | 7               |   |
| С                               | 3.33778    | 1.66795 | -0.137                  | 55              |   |
| С                               | 4.57833    | 1.07741 | -0.130                  | 35              |   |
| С                               | 3.26264    | 3.14223 | -0.261                  | 86              |   |
| С                               | 0.80686    | 2.97452 | 0.018                   | 76              |   |
| С                               | 0.88393    | 1.5115  | 0.0613                  | 34              |   |
| С                               | -0.28379   | 0.71198 | 0.160                   | 87              |   |
| С                               | -0.11735 - | 0.69303 | 0.243                   | 5               |   |
| Н                               | -0.9758 -1 | 1.33369 | 0.379                   | 63              |   |
| Н                               | 5.43713    | 1.72908 | -0.195                  | 16              |   |
| 0                               | 0.2072 -3  | 3.46363 | 0.446                   | 58              |   |
| 0                               | 4.6029 -3  | 3.18025 | -0.661                  | 97              |   |

| 0 | -0.24978 3.60281 0.14119   |
|---|----------------------------|
| 0 | 4.25209 3.84206 -0.42585   |
| С | 1.84898 5.16335 -0.25151   |
| Н | 2.83001 5.57955 -0.4532    |
| Н | 1.15597 5.42412 -1.05035   |
| Н | 1.46317 5.55201 0.69106    |
| С | 2.54723 -4.78162 -0.12002  |
| Н | 2.61939 -5.06759 -1.17099  |
| Н | 3.43822 -5.12659 0.40005   |
| Н | 1.65701 -5.2208 0.31825    |
| Ν | 2.44409 -3.32059 0.00819   |
| Ν | 1.98648 3.70067 -0.17299   |
| Ν | -1.52876 1.28697 0.22833   |
| Ν | 6.02022 -0.81086 0.23532   |
| Н | -1.49887 2.29818 0.34946   |
| С | -2.7925 0.70818 0.05228    |
| С | -3.0362 -0.37183 -0.81197  |
| С | -3.87692 1.29676 0.72606   |
| С | -4.32461 -0.86258 -0.96576 |
| Н | -2.23079 -0.80654 -1.38817 |
| С | -5.16275 0.80796 0.55833   |
| Н | -3.69751 2.13522 1.3893    |
| С | -5.4031 -0.28759 -0.28297  |
| С | 7.19586 -0.01456 -0.11191  |
| Н | 7.04308 0.51428 -1.05201   |
| Н | 7.45741 0.70762 0.67166    |
| Н | 8.03875 -0.69321 -0.24591  |
| С | 6.29282 -1.93409 1.12751   |
| Н | 6.59349 -2.82922 0.5797    |
| Н | 7.09405 -1.64117 1.81202   |
| Н | 5.40988 -2.172 1.71948     |
| Н | -4.5085 -1.69237 -1.63673  |

| C | -6.75991 -0.85643 -0.48609 |
|---|----------------------------|
| 0 | -7.00302 -1.80807 -1.20501 |
| 0 | -7.70558 -0.20592 0.21428  |
| С | -9.07105 -0.68839 0.09027  |
| Н | -9.36171 -0.63688 -0.96081 |
| Н | -9.09729 -1.73439 0.40191  |
| С | -9.94692 0.1847 0.96362    |
| Н | -9.90727 1.22807 0.64266   |
| Н | -10.98284 -0.15606 0.89174 |
| Н | -9.64012 0.12744 2.01043   |
| Н | -5.98458 1.26949 1.08932   |

## [2]•-

| Calculation 7    | Гуре         |          | FOPT                                   |                           |
|------------------|--------------|----------|----------------------------------------|---------------------------|
| Calculation I    | Method       |          | UB3LY                                  | <b>P</b>                  |
| <b>Basis Set</b> |              |          | 6-311+                                 | +G( <b>d</b> , <b>p</b> ) |
| Charge           |              |          | -1                                     |                           |
| Spin             |              |          | Double                                 | t                         |
| Energy (UB3      | SLYP)        |          | -1714.39952025 a.u.<br>0.00000538 a.u. |                           |
| RMS Gradie       | nt Norm      |          |                                        |                           |
| Imaginary F      | req          |          |                                        | D I                       |
| Dipole Mome      | ent          |          | 6.6069<br>C1                           | Debye                     |
| Point Group      | $\mathbf{v}$ | v        |                                        |                           |
| Symbol           | Λ            | I        | L                                      |                           |
| С                | 4.00442      | -2.1572  | 0.0691                                 | 1                         |
| С                | 3.60867      | -0.74615 | 0.2045                                 | 54                        |
| С                | 2.23557      | -0.43079 | 0.0185                                 | 51                        |
| С                | 1.24518      | -1.44793 | 0.0032                                 | 22                        |
| С                | 1.62735      | -2.87158 | 0.1718                                 | 37                        |
| С                | 4.55863      | 0.30498  | 0.3410                                 | )7                        |
| С                | 1.7954       | 0.90283  | -0.1643                                | 7                         |
| С                | 2.78539      | 1.91774  | -0.1879                                | 94                        |
| С                | 4.1069       | 1.62469  | 0.0523                                 |                           |
| С                | 2.41107      | 3.33093  | -0.4274                                | 16                        |

| С | 0.03941 2.61794 -0.51956   |
|---|----------------------------|
| С | 0.42569 1.21686 -0.35176   |
| С | -0.54187 0.17797 -0.36761  |
| С | -0.0857 -1.15104 -0.16839  |
| Н | -0.79401 -1.96553 -0.13013 |
| Н | 4.80151 2.4514 0.07322     |
| 0 | 0.79829 -3.76838 0.26376   |
| 0 | 5.14759 -2.53201 -0.15902  |
| 0 | -1.13419 2.99359 -0.61707  |
| 0 | 3.23702 4.23179 -0.48542   |
| С | 0.60941 4.97495 -0.79012   |
| Н | 1.49529 5.5959 -0.8675     |
| Н | 0.02169 5.03905 -1.70496   |
| Н | -0.00619 5.30245 0.04782   |
| С | 3.43134 -4.53749 0.16415   |
| Н | 3.75346 -4.8293 -0.83705   |
| Н | 4.26694 -4.65672 0.85061   |
| Н | 2.59397 -5.15422 0.4738    |
| Ν | 2.9905 -3.13495 0.17236    |
| Ν | 1.04779 3.5868 -0.57913    |
| Ν | -1.87232 0.45182 -0.53074  |
| Ν | 5.84649 0.12557 0.7668     |
| Н | -2.09071 1.44633 -0.51418  |
| С | -2.93446 -0.44364 -0.77942 |
| С | -2.82218 -1.52284 -1.66642 |
| С | -4.16608 -0.18583 -0.16821 |
| С | -3.92002 -2.3452 -1.90821  |
| Н | -1.88924 -1.70658 -2.18398 |
| С | -5.26923 -1.00222 -0.42921 |
| Н | -4.25955 0.6501 0.51238    |
| С | -5.14309 -2.09388 -1.29521 |
| С | 6.86006 1.15594 0.55013    |

| Н | 6.75483  | 1.6026   | -0.43795 |
|---|----------|----------|----------|
| Н | 6.82201  | 1.94649  | 1.31038  |
| Н | 7.84146  | 0.68298  | 0.59815  |
| С | 6.20244  | -0.87092 | 1.77268  |
| Н | 6.77822  | -1.69529 | 1.34754  |
| Н | 6.79361  | -0.37853 | 2.5503   |
| Н | 5.3053   | -1.27987 | 2.23579  |
| Н | -3.81981 | -3.17725 | -2.59509 |
| Н | -6.00141 | -2.72514 | -1.48437 |
| С | -6.59726 | -0.75118 | 0.20701  |
| 0 | -7.57351 | -1.45529 | 0.0395   |
| 0 | -6.60014 | 0.34052  | 0.98595  |
| С | -7.84861 | 0.67619  | 1.65402  |
| Н | -8.62164 | 0.80336  | 0.89391  |
| Н | -8.13095 | -0.16144 | 2.29468  |
| С | -7.61747 | 1.94474  | 2.44672  |
| Н | -7.33009 | 2.77068  | 1.79223  |
| Н | -8.54113 | 2.22158  | 2.96113  |
| Н | -6.83718 | 1.80345  | 3.19793  |

# [3]•-

| Calculation       | п Туре     | F        | OPT                |
|-------------------|------------|----------|--------------------|
| Calculation       | n Method   | U        | <b>B3LYP</b>       |
| <b>Basis Set</b>  |            | 6        | -311++G(d,p)       |
| Charge            |            | -]       | 1                  |
| Spin              |            | D        | oublet             |
| Energy (U         | B3LYP)     | -]       | 1903.01938622 a.u. |
| <b>RMS</b> Grad   | lient Norm | 0        | .00000540 a.u.     |
| Imaginary         | Freq       |          |                    |
| <b>Dipole Mo</b>  | ment       | 3        | .9512 Debye        |
| <b>Point Grou</b> | ւթ         | C        | 21                 |
| Symbol            | Х          | Y        | Ζ                  |
| С                 | -3.82553   | -2.29949 | -0.48227           |
| С                 | -3.69693   | -0.83773 | -0.36681           |

| С | -2.38488 | -0.30217 | -0.25813 |
|---|----------|----------|----------|
| С | -1.2433  | -1.09567 | -0.54267 |
| С | -1.39606 | -2.51195 | -0.95686 |
| С | -4.82109 | 0.0177   | -0.19468 |
| С | -2.15816 | 1.03804  | 0.14002  |
| С | -3.29391 | 1.82416  | 0.46045  |
| С | -4.56585 | 1.32859  | 0.30227  |
| С | -3.13685 | 3.2193   | 0.93381  |
| С | -0.68837 | 2.97094  | 0.64914  |
| С | -0.84959 | 1.57102  | 0.25091  |
| С | 0.27291  | 0.74982  | -0.02819 |
| С | 0.02877  | -0.58342 | -0.44468 |
| Н | 0.85334  | -1.22631 | -0.716   |
| Н | -5.38762 | 1.99676  | 0.51343  |
| 0 | -0.44553 | -3.20037 | -1.30673 |
| 0 | -4.84756 | -2.92275 | -0.22513 |
| 0 | 0.40693  | 3.54101  | 0.69959  |
| 0 | -4.0884  | 3.91985  | 1.24981  |
| С | -1.60906 | 5.09211  | 1.42609  |
| Н | -2.56854 | 5.50776  | 1.71416  |
| Н | -0.92069 | 5.10922  | 2.27002  |
| Н | -1.17946 | 5.67163  | 0.60882  |
| С | -2.87373 | -4.46684 | -1.11373 |
| Н | -3.0079  | -4.99196 | -0.16635 |
| Н | -3.75941 | -4.61759 | -1.72728 |
| Н | -1.99169 | -4.84463 | -1.62043 |
| Ν | -2.6826  | -3.02803 | -0.87972 |
| Ν | -1.82901 | 3.70296  | 0.99485  |
| Ν | 1.54968  | 1.24079  | 0.0602   |
| Ν | -6.10558 | -0.32729 | -0.51471 |
| Н | 1.59144  | 2.24693  | 0.21428  |
| С | 2.76594  | 0.53146  | 0.07512  |

| С | 2.91884 -0.69157 0.73708   |
|---|----------------------------|
| С | 3.87833 1.12137 -0.53689   |
| С | 4.16216 -1.32987 0.75624   |
| Н | 2.08513 -1.14018 1.25763   |
| С | 5.12431 0.49243 -0.49655   |
| Н | 3.76767 2.06968 -1.04584   |
| С | 5.26619 -0.74072 0.1406    |
| С | -7.24125 0.42432 0.01574   |
| Н | -7.07186 0.70161 1.05562   |
| Н | -7.45598 1.32752 -0.5695   |
| Н | -8.12063 -0.21996 -0.01705 |
| С | -6.42322 -1.17237 -1.66215 |
| Н | -6.78989 -2.15492 -1.3589  |
| Н | -7.18885 -0.6675 -2.25854  |
| Н | -5.542 -1.31065 -2.28726   |
| С | 6.33084 1.09852 -1.13692   |
| 0 | 7.42848 0.58116 -1.14287   |
| 0 | 6.06948 2.2839 -1.70749    |
| С | 4.35688 -2.64089 1.44709   |
| 0 | 5.41682 -3.22927 1.50072   |
| 0 | 3.22693 -3.10121 2.00419   |
| Н | 6.228 -1.23404 0.16206     |
| С | 7.17697 2.94903 -2.35429   |
| Н | 6.76652 3.87669 -2.74444   |
| Н | 7.96764 3.15287 -1.63224   |
| Н | 7.56622 2.33131 -3.16357   |
| С | 3.31444 -4.36767 2.69393   |
| Н | 2.31357 -4.55837 3.07219   |
| Н | 3.61867 -5.15259 2.00156   |
| Н | 4.02898 -4.30147 3.51431   |