Electronic Supporting Information (ESI)

Heterogeneous Post-Passivation of Inorganic Cesium Lead Halide Perovskite Quantum Dots for Efficient Electroluminescent Devices

Xuefei Li,^{abc} Liuqing Yang,^{abc} Qingqing Yang,^a Shumeng Wang,^{*a} Junqiao Ding,^{*abc} Lixiang Wang^{ab}

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

^b University of Science and Technology of China, Hefei 230026, P. R. China.

^c School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R.

China

*Corresponding authors: <u>wangshumeng@ciac.ac.cn</u>; <u>dingjunqiao@ynu.edu.cn</u>

Fig. S1 Magnified FTIR spectra of pristine QDs, FABr treated QDs, FABr ligand, DDAB treated QDs and DDAB ligand ranged from 1800 to 1200 cm⁻¹ (a) and from 4000 to 2400 cm⁻¹ (b).

Fig. S2 XPS spectra. (a) Cs 3d spectra, (b) Pb 4f spectra and (c) Br 3d spectra of pristine, FABr and DDAB treated CsPbBr₃ QDs. (d) N 1s spectra of FABr treated CsPbBr₃ QDs and FABr.

CsPbBr ₃ QDs	Cs:Pb:Br ratio	N:Pb ratio	O:Pb ratio
Pristine	1.11:1:4.01	0.56	1.90
FABr treated	1.09:1:4.35	0.88	1.15
DDAB treated	1.27:1:4.24	0.81	0.67

Table S1. Summary of the atom ratio of CsPbBr₃ QDs.

CsPbBr ₃ QDs ^a	λ_{em}	PLQY ^b	$\tau_{ave}{}^{c,d}$	k_r^{d}	k_{nr}^{d}
	(nm)	(%)	(ns)	$(10^{-2} \text{ ns}^{-1})$	$(10^{-2} \mathrm{ns}^{-1})$
Pristine	513 / 513	46 / 30	10.3 / 16.8	4.5 / 1.8	5.2 / 4.1
FABr treated	513 / 514	87 / 72	13.7 / 17.7	6.3 / 4.1	1.0 / 1.5
DDAB treated	514 / 515	92 / 73	19.8 / 21.2	4.7 / 3.4	0.4 / 1.3

Table S2 The summary of photophysical parameters of pristine, FABr treated and DDAB treated CsPbBr₃ QDs including solution and film state.

^aThe data in front of "/" were measured in toluene at a concentration of 0.1 mg mL⁻¹ and the data followed "/" were measured in the films spin-coated on the quartz substates. ^bMeasured by using an integrating sphere and excited at 400 nm. ^cThe lifetimes were determined by triple exponential fit of PL decay curves. ^dThe τ_{ave} , k_r and k_{nr} are calculated based on the following

formulas:
$$\tau_{ave} = \frac{\sum_{i=1}^{3} a_i \tau_i^2}{\sum_{i=1}^{3} a_i \tau_i} = \frac{1}{k_r + k_{nr}}, \quad k_r = \frac{PLQY}{\tau_{ave}}, \quad k_{nr} = \frac{1}{\tau_{ave}} - k_r$$
 (a_i and τ_i are

normalized coefficients and time constants, respectively.

Fig. S3 (a) AFM images of CsPbBr₃ QD films (from left to right: pristine, FABr treated and DDAB treated) and corresponding R_q and R_a values listed on the bottom. (b) SEM images of CsPbBr₃ QD films (from left to right: pristine, FABr treated, and DDAB treated).

Fig. S4 (a)The diagram of CsPbBr₃ PeQLEDs device configuration. (b) The molecular structure of PEDOT:PSS, VNPB and SPPO13.

Fig. S5 UPS spectra of pristine, FABr and DDAB treated CsPbBr₃ QDs including cut-off region (left) and band-edge region (right).

CsPbBr ₃ QDs	VB ^a (eV)	CB ^b (eV)
Pristine	-6.04	-3.65
FABr treated	-5.95	-3.56
DDAB treated	-5.86	-3.47

Table S3 Summary of VB and CB values of CsPbBr $_3$ QDs

^aThe VB was determined by UPS spectra, VB= -(hv - E_{cut-off} + E_{band-edge}). ^bThe CB was determined by VB and E_g (estimated from the absorption onset), CB=VB+E_g.

9

Fig. S6 Power efficiency as a function of luminance for CsPbBr₃ PeQLEDs.

CsPbBr ₃ PeQLEDs	$R_{s}(\Omega)$	$R_{ct} (k\Omega)$
Pristine	39.89	8.97
FABr treated	58.19	4.58
DDAB treated	64.21	22.76

Table S4 Summary of R_s and R_{ct} values of CsPbBr₃ PeQLEDs. The R_s and R_{ct} were calculated by fitting the impedance curves of all CsPbBr₃ PeQLEDs.

Fig. S7 (a) Absorption and PL spectra of pristine, FABr treated and DDAB treated CsPbBr_{1.3}Cl_{1.7} QD films (dash line: absorption spectra; solid line: PL spectra). (b) The time-resolved PL decay spectra of pristine, FABr treated and DDAB treated CsPbBr_{1.3}Cl_{1.7} QD films. (c) Absorption and PL spectra of pristine, FABr treated and DDAB treated CsPbBr₁I₂ QD films (dash line: absorption spectra; solid line: PL spectra). (d) The time-resolved PL decay spectra of pristine, FABr treated CsPbBr₁I₂ QD films (dash line: absorption spectra; solid line: PL spectra). (d) The time-resolved PL decay spectra of pristine, FABr treated and DDAB treated CsPbBr₁I₂ QD films.

Fig. S8 Power efficiency as a function of luminance for $CsPbBr_{1.3}Cl_{1.7}$ and $CsPbBr_1I_2$ PeQLEDs.