Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Efficient tuning of the conversion from ISC to high-level RISC via adjusting the triplet energies of charge-transporting layers in rubrene-doped OLEDs

Xiantong Tang,^a Xi Zhao,^a Hongqiang Zhu,^b Linyao Tu,^a Caihong Ma,^a Ying Wang,^a Shengnan

Ye,^a and Zuhong Xiong*^a

^aSchool of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China ^bChongqing Key Laboratory of Photo-Electric Functional Materials, Chongqing Normal University, Chongqing 401331, China

Corresponding Author:

zhxiong@swu.edu.cn

Abbreviation	HOMO [eV]	LUMO [eV]	Ref.
<i>m</i> -MTDATA	-5.1	-2.0	[1]
TCTA	-5.2	-1.7	[2]
NPB	-5.4	-2.4	[3]
CBP	-6.0	-2.3	[4]
Rubrene	-5.4	-3.2	[5]
Alq ₃	-5.6	-3.0	[6]
BCP	-6.4	-2.9	[7]
PO-T2T	-7.5	-3.5	[8]

 Table S1. Energy levels of the materials used in the main article.

Figure S1 Photoluminescence spectrum of CBP film and absorption spectrum of rubrene film at room temperature.

Figure S2 (a) Schematic diagrams of the ISC process from singlet (PP_1) to triplet polaron pairs (PP_3) states in absence and presence of an external magnetic field and ISC-determined MEL fingerprint curve. (b) Schematic diagrams of the RISC process from triplet (CT_3) to singlet charge-transfer (CT_1) states without and with magnetic field and RISC-induced MEL fingerprint curve.

Figure S3 (a) The current dependence of MEL responses in reference device at 300 K. (b) Temperature-dependent MEL responses of reference device at a fixed bias current of 50 μ A.

Figure S4 Schematic diagram of microscopic mechanisms in Device 2 and its energy level structure.

Figure S5 (a) Temperature-dependent normalized EL spectra for Device 4 at a bias current of 100 μ A. (b) Current-dependent EL spectra for Device 4 at 300 K.

Figure S6 (a) Energy level alignment of Device 4. (b) Schematic diagram of microscopic mechanisms in Device 4.

Figure S7 Temperature-dependent MEL responses of (a) Device 6, (b) Device 7, and (c) Device 8.

References

1 N. T. Tierce, C. H. Chen, T. L. Chiu, C. F. Lin, C. J. Bardeen, and J. H. Lee, *Phys. Chem. Chem. Phys.*, 2018, **20**, 27449–27455.

2 J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, *Adv. Funct. Mater.*, 2011, **21**, 3250–3258.

3 Q. M. Peng, W. J. Li, S. T. Zhang, P. Chen, F. Li, and Y. G. Ma, Adv. Opt. Mater., 2013, 1, 362-366.

4 J. Q. Deng, W. Y. Jia, Y. B. Chen, D. Y. Liu, Y. Q. Hu, and Z. H. Xiong, Sci. Rep., 2017, 7, 44396.

5 D. W. Di, L. Yang, J. M. Richter, L. Meraldi, R. M. Altamimi, A. Y. Alyamani, D. Credgington, K. P. Musselman, J. L. MacManus-Driscoll, and R. H. Friend, *Adv. Mater.*, 2017, **29**, 1605987.

6 Q. M. Peng, N. Gao, W. J. Li, P. Chen, F. Li, and Y. G. Ma, Appl. Phys. Lett., 2013, 102, 193304.

7 G. R. Fu, L. Liu, W. T. Li, Y. N. He, T. Z. Miao, X. Q. Lü, and H. S. He, *Adv. Opt. Mater.*, 2019, 7, 1900776.

8 J. H. Lee, S. H. Cheng, S. J. Yoo, H. Shin, J. H. Chang, C. I. Wu, K. T. Wong, and J. J. Kim, *Adv. Funct. Mater.*, 2015, **25**, 361–366.