Highly Efficient Fe-N-C/Fe₃O₄ Catalyst for the Electroreduction of

Thionine with its Application in the Determination of MicroRNAs

Xiangyu Ma¹, Kun Qian¹, Onome Ejeromedoghene¹, Martha Kandawa-Schulz², Wei Song², Yihong Wang¹

1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China

2. Department of Chemistry and Biochemistry, University of Namibia, Windhoek, Namibia Author, Tel: +8615996315308; E-mail: <u>yihongwang@seu.edu.cn</u>

Supporting materials

Synthesis of PEI-Fe₃O₄ and AuNPs

Fe₃O₄ was synthesized according to Cai's report¹. Briefly, FeCl₂ 4H₂O (2.5 g) was first dissolved in 15 ml water. Under vigorous stirring, ammonium hydroxide (12 ml) was added, and the suspension was continuously stirred in air for additional 10 min, allowing the iron (II) to be oxidized. Then, the reaction mixture was transferred to an autoclave with a volume of 100 ml (KH-50 autoclave, Shanghai Yuying Instrument Co., Ltd., Shanghai) and 10 ml aqueous solution containing 1.08g PEI was added into the autoclave. After being stirred thoroughly, the reaction mixture was cooled down to room temperature. The black precipitate was collected by magnetic separation and purified with water 5 times to remove excess reactants and byproducts. Fianlly, the obtained PEI-Fe₃O₄ NPs were redispersed in water.

According to Wang's report². Citrate capped gold nanoparticles (AuNPs) were prepared by chemical reduction of HAuCl₄ using citrate as the reducing agent and stabilizer. HAuCl₄ (50 ml, 1mM) was added to an aqua regia cleaned three-neck flask. When the solution began to reflux, 10 ml of 38.8 mM sodium citrate was added. The color changed from pale yellow to deep red and the system was allowed to reflux for another 15min before heating was turned off. Then, the AuNPs was collected through centrifugation and washed with water for three times.

Figure S1. Element mappings of (A)Fe₃O₄@AuNPs for Fe, Au and O atoms, (B) Fe-N-C catalyst for C, N, and Fe atoms.

Figure S2. (A) CV responses to 25 μ M thionine in 0.01 M PBS (pH 7.0) on Fe-N-C modified MGCEs over 49 CV scans [scan rate (v) = 100 mV s⁻¹]; (B) the corresponding value of Ip.

Figure S3. Values of Ipc obtained on Fe-N-C/thionine modified MGCE in 0.01 M PBS (pH 7.0) containing 25 μ M thionine over 49 CV scans [scan rate (v) = 100 mV s⁻¹]. The inset shows the corresponding CVs.

Figure S4. (A)TEM image of Fe_3O_4 , and (B) corresponding size of the Fe_3O_4 .

Fingure S5. TEM image of Fe-N-C.

Table S1 Sequences of o	ligonucleotides	for th	is work.
-------------------------	-----------------	--------	----------

Name	Sequence			
target microRNA-21	5'-UAG CUU AUC AGA CUG AUG UUG A-3'			
single-base				
mismatch target	5 -0A0 COU AUC <u>0</u> 0A COU AUG 000 A-5			
non-complementary				
microRNA	J -ACC OCA CAO OUO OAA OCO AAC O-J			
HDNA1	5'-CAGACTGATGTTGAAAGGACATGGATCAACA			
	TCAGTCTGATAAGCTAGGAGTGATTAATA SH-3'			
HDNA2	5'-AAGGACATGGACAGACTGATGTTGATCCATG			
	TCCTTTCAACATGAAGAAGCCCCGACT NH ₂ -3'			

Table S2 Determination of microRNA-21 added in human serum samples (n=5) with

the biosensor.

Sample	Standard value/	Found value/ μA	Recovery (%)	RSD (%)
	μΑ			
100 fM	55.56	56.42	101.55%	4.17
1 pM	53.3	54.54	102.33%	2.92
10 pM	51.04	50.23	98.41%	3.43
100 pM	48.78	47.68	97.74%	2.19
1 nM	46.52	45.11	96.97%	4.36

Figure S4. DPV responses to the developed biosensor in specificity for the (a) 10 pM of non-complementary miRNA, (b) 10 pM of single-base mismatched target and (c) 1pM of miRNA-21;

Reference

- 1. H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G. Zhang and X. Shi, *ACS Applied Materials & Interfaces*, 2013, **5**, 1722-1731.
- 2. F. Wang and J. Liu, *Nanoscale*, 2015, 7, 15599-15604.