Electronic Supplementary Information

Selective colorimetric sensing sub-nanomolar Hg²⁺ based on its significantly enhancing peroxidase mimics of silver/copper nanoclusters

Yuanyuan Cai^a, Jin Wang^b, Lingxi Niu^a, Yujiao Zhang^a, Xuan Liu^a, Chongyang Liu^a, Shuqing Yang^a, Huan Qi^{c*} and Aihua Liu^{a*}

^aSchool of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China

^bQingdao Institute for Food and Drug Control, 7 Longde Road, Qingdao 266073, China

^cShanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China *Corresponding authors. E-mails: liuah@qdu.edu.cn; qihuan@sjtu.edu.cn.

1. Supplementary figures:

Fig S1. The size distribution of Ag/Cu NCs (the reaction molar ratio of Ag⁺ to Cu²⁺ is 1/0.5).

Fig S2. (A) TEM image and (B) the size distribution of the Ag/Cu NCs with Hg^{2+} (Hg^{2+} concentration, 700 nM).

Fig. S3 Effect of the concentration of (A) TMB, (B) H_2O_2 , and (C) Ag/Cu NCs dosages, (D) pH, (E) temperature, and (F) response time on Ag/Cu NCs Hg^{2+} (Ag/Cu NCs and Hg^{2+} ions concentration, 0.25 mM and 700 nM, respectively).

Fig. S4 Steady-state kinetic analyses using the Lineweaver–Burk model for Hg^{2+} -Ag/Cu NCs (0.25 mM) (A) by changing H_2O_2 concentration and fixed TMB concentration (0.2 mM), (B) changing TMB concentration and fixed H_2O_2 concentration (1.0 mM).

Fig. S5 The storage stability (A) and reproducibility (B) of Ag/Cu NCs for the colorimetric Hg^{2+} analysis.

2. Supplementary table:

Table S1. Comparison of analytical performance for Hg^{2+} ions based on different nanomaterials

Nanomaterial	Analysis method	Linear range (nM)	LOD (nM)	References
N-CQDs	Fluorimetry	0.0-50000	250	1
aptasensor	Fluorimetry	10-9000	7.7	2
polypyrrole decorated	Electroanalysis	1.0-51560	0.47	3
graphene/-cyclodextrin				
PEG-SH/SePs/AuNPs	Electroanalysis	70-17500	5.0	4
Au NPs	Colorimetry	10-20000	10	5
Cu NPs	Colorimetry	500-3500	43	6
Ag/Cu NCs	Colorimetry	0.1–700	0.05	This work

References

- 1. R. Zhang and W. Chen, Biosens. Bioelectron., 2014, 55, 83-90.
- 2. X. Song, B. Fu, Y. Lan, Y. Chen, Y. Wei and C. Dong, Spectrochim Acta A, 2018, 204, 301.
- 3. S. Palanisamy, K. Thangavelu, S. M. Chen, V. Velusamy, M. H. Chang, T. W. Chen, F. M. A. Al-Hemaid, M. A. Ali and S. K. Ramaraj, *Sens. Actuators B Chem.*, 2017, **B243**, 888-894.
- M. P. N. Bui, J. Brockgreitens, S. Ahmed and A. Abbas, *Biosens. Bioelectron.*, 2016, 85, 280-286.
- 5. D. Su, X. Yang, Q. Xia, F. Chai and F. Qu, *Rsc Advances*, 2013, **3**, 24618.
- 6. R. A. Soomro, A. Nafady, Sirajuddin, N. Memon, T. H. Sherazi and N. H. Kalwar, *Talanta*, 2014, **130**, 415-422.