## **Supplementary Material**

## Iron and nitrogen co-doped carbon quantum dots for sensitive and selective

## detection of hematin and ferric ions and cell imaging

- Yuqing Wu <sup>a,1</sup>, Lei Cao <sup>a,b,1</sup>, Minghui Zan <sup>c</sup>, Zheng Hou <sup>a</sup>, Mingfeng Ge <sup>a</sup>, Wen-Fei Dong <sup>a</sup>, Li Li <sup>a,\*</sup>
- <sup>a</sup> CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, P. R. China;
- <sup>b</sup> School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China;
- <sup>c</sup> State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China;
- $\Box$  Corresponding authors.
- E-mail addresses: lil@sibet.ac.cn (L. Li)



Fig. S2. N 1s XPS spectrum of Fe, N-CDs.

**Fig. S3.** Effect of ionic strengths on the fluorescence intensity of the Fe, N-CDs with the excitation wavelength at 365 nm.

Fig. S4. Effect of different pH values on the fluorescence intensity of the Fe, N-CDs.







Fig. S5. Fluorescence intensity of Fe, N-CDs under irradiation of 365 nm UV light.



Fig. S6. The sturcture formula of hematin.



Fig. S7. UV-vis absorption of Fe, N-CDs in the absence and presence of hematin.



Fig. S8. UV-vis absorption of Fe, N-CDs in the absence and presence of  $Fe^{3+}$ .



**Fig. S9.** Number-average particle diameter from dynamic light scattering of Fe, N-CDs with Fe<sup>3+</sup> which dispersed in ultrapure water.



Fig. S10. The TEM image of Fe, N-CDs after adding  $Fe^{3+}$ .



Fig. S11. The zeta potential of Fe, N-CDs before and after  $Fe^{3+}$  addition.



Fig. S12. Cytotoxicity of the Fe, N-CDs against HeLa cells.



Fig. S13. The results of fluorescent colocalization analysis. The scale bar is 100  $\mu$ m.

| Method    | Linear range (µmol/L) | Detection limit (µmol/L) | Ref.       |
|-----------|-----------------------|--------------------------|------------|
| N-CDs     | 0.4~32                | 0.18                     | S1         |
| CQDs      | 0.5~30                | 0.10                     | S2         |
| QDs       | 0.5~15                | 0.32                     | <b>S</b> 3 |
| CQDs      | 0.5~10                | 0.25                     | S4         |
| N, Cl-CDs | 1.53-80               | 0.46                     | S5         |
| Fe, N-CDs | 0~27                  | 0.024                    | This work  |

Table S1. Comparison of other reported nanoparticles for the determination of hematin.

Table S2. Comparison of other reported nanoparticles for the determination of Fe<sup>3+</sup>.

| Method     | Linear range (µmol/L) | Detection limit (µmol/L) | Ref.       |
|------------|-----------------------|--------------------------|------------|
| S-CDs      | 1~500                 | 0.10                     | S6         |
| N, P-CDs   | 1~150                 | 0.33                     | S7         |
| GQDs       | 0~80                  | 7.22                     | <b>S</b> 8 |
| N-CDs      | 2~25                  | 0.90                     | S9         |
| $MoS_2QDs$ | 0-50                  | 0.40                     | S10        |
| Fe, N-CDs  | 0~200                 | 0.64                     | This work  |

Table S3. The detailed data on the average lifetime of Fe, N-CDs, Fe, N-CDs with  $Fe^{3+}$ 

and Fe, N-CDs with hematin.

| Samples                                   | $\tau_1(ns)$ | Value  | $\tau_2(ns)$ | Value   | Average lifetime (ns) |
|-------------------------------------------|--------------|--------|--------------|---------|-----------------------|
| Fe, N-CDs                                 | 3.0923       | 94.011 | 14.585       | 255.468 | 13.75                 |
| Fe, N-CDs + Fe <sup><math>3+</math></sup> | 2.2594       | 93.498 | 13.349       | 355.167 | 12.88                 |
| Fe, N-CDs + Hematin                       | 4.2735       | 14.58  | 12.818       | 96.914  | 12.41                 |

## References

1. Y. J. Ju, N. Li, S. G. Liu, J. Y. Liang, X. Gao, Y. Z. Fan, H. Q. Luo and N. B. Li, *Analytical and Bioanalytical Chemistry*, 2019, **411**, 1159-1167.

2. J. Y. Liang, L. Han, S. G. Liu, Y. J. Ju, X. Gao, N. B. Li and H. Q. Luo, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2019, **212**, 167-172.

3. F.-Y. Wu, Y.-S. Cheng, D.-M. Wang, M.-L. Li, W.-S. Lu, X.-Y. Xu, X.-H. Zhou and X.-W. Wei, *Materials Science and Engineering: C*, 2020, **112**, 110898.

4. Q. Q. Zhang, B. B. Chen, H. Y. Zou, Y. F. Li and C. Z. Huang, *Biosensors and Bioelectronics*, 2018, **100**, 148-154.

5. W. He, Z. Huo, X. Sun and J. Shen, Microchemical Journal, 2020, 153, 104528

6. Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Chen, Y. Liu and H. Zhou, *Journal of Materials Chemistry A*, 2015, **3**, 542-546.

7. J. Shangguan, J. Huang, D. He, X. He, K. Wang, R. Ye, X. Yang, T. Qing and J. Tang, *Analytical Chemistry*, 2017, **89**, 7477-7484.

8. A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li and P. Chen, *Advanced Functional Materials*, 2014, **24**, 3021-3026.

9. R. Atchudan, T. N. J. I. Edison, K. R. Aseer, S. Perumal, N. Karthik and Y. R. Lee, *Biosensors and Bioelectronics*, 2018, **99**, 303-311.

10. L. Ruan, Y. Zhao, Z. Chen, W. Zeng, S. Wang, D. Liang and J. Zhao, *Applied Surface Science*, 2020, **528**, 146811