Supplementary Material

A novel electrochemiluminescence immunosensing strategy fabricated by Co(OH)₂ Two-dimensional Nanosheets and Ru@SiO₂-Au NPs for highly sensitive detection of enrofloxacin

Mengqi Jiao^a, Jiaxin Zhang^a, Kang Wu^b, Anping Deng^{a,*}, Jianguo Li^{a,*}

^a The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China

^b School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, P.R. China

* Correspondence authors: J.G. Li, Telephone: +86 51265882195, Fax: +86 51265882195, E-mail address: lijgsd@suda.edu.cn; A.P. Deng, Telephone: +86 51265882362, Fax: +86 51265882362, E-mail address: denganping@suda.edu.cn

Contents

Reagents and materials	2
Buffer solution	2
Apparatus	3
Preparation of Co(OH) ₂ two-dimensional nanosheets	3
Preparation of Ru@SiO ₂ -Au NPs	4
Preparation of practical samples	4
Characterization of nanomaterials	6
Stability of the immunosensor	8
Structural formula of enrofloxacin and interfering substances	9
References	10

Reagents and materials

Chloroauric acid (HAuCl₄·4H₂O, 47.8%), cobalt (II) chloride hexahydrate (CoCl₂·6H₂O), disodium hydrogen phosphate dodecahydrate (Na₂HPO₄·12H₂O, 99%), mono-potassium phosphate (KH₂PO₄, 99%), cyclohexane (99.5%), ammonia solution, 1hexanol (98%) were obtained from Sinopharm Chemical Reagent Co., Ltd (shanghai China), 2-methylimidazole (2-MIM, 98%) was purchased from Tokyo Chemical Industry Co. Ltd. Tetraethyl orthosilicate (98%), (3-Aminnopropyl) triethoxysilane (APTES, 90%) and tris(2,2'-bipyridy) ruthenium(II) chloride hexahydrate (Ru(bpy) ₃Cl₂ • 6H₂O, 98%) were purchased from Aladdin Industry Corporation. Bovine serum albumin (BSA) were acquired from Sigma-Aldrich Co., Ltd (USA). Sodium chloride (NaCl), potassium chloride (KCl, 99.5%) and sodium hydroxide (NaOH) were bought from Adamas Reagent Co., Ltd (Shanghai, China). Triton X-100 (TX-100, 98%) was purchased from Titan Scientific Co., Ltd. Acetone was bought from Linfeng Chemical Reagent Co., Ltd. Enrofloxacin (ENR), ciprofloxacin (CIP), ofloxacin (OFLX), norfloxacin (NOR), lomefloxacin (LOM) and gatifloxacin (GAT) were obtained from the National Institutes for Food and Drug Control (Beijing, China). The Ab against ENR and coating antigen of ENR were offered by our lab and evaluated by ELISA.

Buffer solution

Phosphate-buffered saline stock solution (PBS, 0.1 M) was prepared by KCl (0.1 M), NaCl (0.1 M), Na₂HPO₄ (6.4 mM) and KH₂PO₄ (1.0 mM). K₂S₂O₈ buffer solution (0.1 M) containing of KH₂PO₄ (0.1 M), Na₂HPO₄ (0.1 M), KCl (0.1 M) and K₂S₂O₈ (0.1 M) was used as ECL detection buffer solution. Fe(CN)₆³⁻/Fe(CN)₆⁴⁻ standard solution containing

KCl (0.1 M), $Fe(CN)_6^{3-}$ (2.5 mM) and $Fe(CN)_6^{4-}$ (2.5 mM) were employed to measure electrochemical impedance spectroscopy (EIS).

Apparatus

The ECL emission was measured by an MPI- A ECL analytical system (Xi'An Remex Electronic Science & Technology Co., Ltd (Xi'An, China) in ECL buffer solution. The three-electrode system as that in the ECL detection, including working electrode, Ag/AgCl as reference electrode, platinum electrode as auxiliary electrode. The whole test was carried out under the condition that the scan potential was varied from 0 to 1.3 V and the voltage of the photomultiplier tube (PMT) was set at - 600 V. The Scanning Electronic Microscopy (SEM) was supplied by Hitachi SU8010 SEM (Hitachi Co., Japan). The Transmission Electron Microscope (TEM) images were obtained from Tecnai G2 F20 S-TWIN 200KV (FEG, FEI Co., USA). UV-vis absorption spectrum was recorded with Agilent 8453 UV-vis spectrophotometer (Agilent Co., America). EIS was undertaken using an RST electrochemical workstation (Suzhou Risetest Instrument Co., Ltd, Suzhou, China).

Preparation of Co(OH)₂ two-dimensional nanosheets

Briefly, 1.2 mmol of 2-methylimidazole and 0.3 mmol of CoCl₂•6H₂O were separately dissolved in 7.5 mL of H₂O. After stirring for 30 min at room temperature, the two solutions were mixed and stirred at room temperature for 12 h. The product was separated via centrifuging and washing with absolute ethanol and deionized water three times. Finally, the green product was collected, dried under vacuum and stored at room

temperature.

Preparation of Ru@SiO₂-Au NPs

In detail, it was divided into three steps. Firstly, a simple one-pot polymerization reaction was used to prepare for Ru@SiO₂, in short, 1.77 ml of TX-100, 7.5 ml of cyclohexane, 1.8 mL of 1-hexanol were added to a clean flask and the mixed solution was stirred at 25 °C water bath. After the above turbid solution was clear, 80 µL of 0.1M Ru(bpy)₃Cl₂·6H₂O were dissolved in 340 μ L of ultrapure water, 100 μ L of tetraethyl orthosilicate and 60 µL of NH₄OH, all were added successively in it. Subsequently, the mixed solution was stirred at 25 °C for 24 h. 10 ml of acetone was added to the obtained Ru@SiO₂, then centrifuged and washed three times with deionized water and absolute ethanol to remove excess molecules on the surface, 5ml of pure Ru@SiO₂ absolute ethanol solution was prepared. Secondly, 200 µL of aminopropyltriethoxysilane (APTES) was added to aboved Ru@SiO₂, which was stirred in a water bath at 25 °C for 40 min in dark. The obtained mixture was centrifuged and washed with absolute ethanol and deionized water four times in turn to remove redundant APTES. Finally, 1 mLof prepared luminophor was mixed with 2 mL of Au NPs in a water bath at 25 °C for 2 h, which was centrifuged and washed with deionized water to obtain the Ru@SiO₂-Au NPs.

Preparation of practical samples

Enrofloxacin was a commonly used medicine to treat livestock, poultry and aquatic diseases, two different meats (chicken and shrimp) and lake water were randomly collected from the vegetable market and lake respectively, which spiked recovery

experiments were carried out. The ethyl acetate method was used to pre-process the purchased and collected samples. First of all, the meat samples were mashed in a mortar and placed in a 50mL centrifuge tube, add 0.01, 1, 100 ng/mL ENR standard solution and 200 µL deionized water respectively, and vortex to mix well. Then add 3 g of anhydrous magnesium sulfate and 20 mL of ethyl acetate. After mixing, vortex on a shaker for 10 minutes, sonicate for 5 minutes, and centrifuge at (6000 rpm, 4min) to retain the supernatant. Aspirate the supernatant and dry it with nitrogen at 45 °C. Add 1 mL of ultrapure water to reconstitute into 0.001, 0.1 and 10 ng/mL samples and then add 3 mL of normal hexane. The alkane was vortexed and centrifuged at 10000 rpm for 5 min. Last but not least, the upper layer of n-hexane was sucked away and the lower layer of clear liquid was filtered to be tested. For water samples, we used 0.45 µm filter membrane to remove insolubles and prepared 0.001, 0.1 and 10 ng/mL with lake water respectively and kept them in a refrigerator at 4 °C for test.

Characterization of nanomaterials

Figure S1. UV-vis spectra of Au NPs, Ru@SiO₂ and Ru@SiO₂-Au NPs

Figure S2. Five groups of Ru@SiO₂-Au NPs for electrochemiluminescence

Figure S3. EDS spectrum of 2D Co(OH)₂ (Inset: SEM characterization of 2D Co(OH)₂)

Figure S4. XPS of Co(OH)₂ and Co(OH)₂-Ae

Figure S5. UV-vis spectra of the ENR coating antigen (Ae), Co(OH)₂ and Co(OH)₂-Ae

Figure S6. ECL-potential curve of immunsensor in (a') Ru@SiO₂-Au NPs and (b') Ru@SiO₂

Stability of the immunosensor

Figure S7. Seventeen continuous cyclic scans of the immunosensor formed with 0.01 ng mL⁻¹ ENR standard solutions in TPA buffer solution.

Structural formula of enrofloxacin and interfering substances

	Structural formula
Enrofloxacin	HOOC N N
Ciprofloxacin	HOOC N N N N N N N N
Ofloxacin	
Norfloxacin	HOOC N N N N N N
Lomefloxacin	
Gatifloxacin	

 Table S1 Structural formula of enrofloxacin and interfering substances

References

[1] L. M. Zhou, J. S. Huang, B. Yu, Y. Liu and T. Y. You, ACS Appl. Mater. Inter., 2015,

7, 24438-24445.