Supplementary information

Turning waste into treasure: chicken eggshell membrane derived fluorescent

carbon nanodots for rapid and sensitive detection of Hg²⁺ and glutathione

Hongding Zhang,*a Sifei Wu, a Zhenhua Xing,^b Hai-Bo Wang a

^a College of Chemistry and Chemical Engineering, Institute for Conservation and

Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of

Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang

464000, PR China

^b Xinyang Branch, Henan Province Institute of Boiler and Pressure Vessel Safety

Testing, Xingyang 464000, PR China

***Corresponding author** Hongding Zhang, Email: zhanghongding0606@163.com, Fax: +86 376 6391172

Table of content:Supporting Figures S1-4, TableS1.

Fig. S1 The stability of the as-prepared C-Dots.

Fig. S2 Fluorescence intensities of C-Dots in the presence of 20 μ M of Zn²⁺, Co²⁺, Fe²⁺, Fe³⁺, Ni²⁺, Pb²⁺, Hg²⁺. The error bars stand for the standard deviation of three repetitive experiments.

Fig. S3 (A) Fluorescence intensities of C-Dots and C-Dots-Hg system under various pH values; (B) \triangle F/F0 of the C-Dots-Hg system under various pH values. (C) Fluorescence intensities of C-Dots-Hg system with different incubation times. The concentration of Hg²⁺ is 50 µM. The error bars stand for the standard deviation of three repetitive experiments.

Fig. S4 Fluorescence intensities of C-Dots-Hg system in the presence of 20 μ M GSH with different incubation times. The concentration of Hg²⁺ is 50 μ M. The error bars stand for the standard deviation of three repetitive experiments.

Different carbon sources	Detection range (µM)	LOD (M)	Reference
Ascorbic acid derived C-Dots		1.5×10 ⁻⁵	1
Soluble starch derived C-Dots	0.5-100	3.5×10-7	2
Tamarindus indica leaves derived	0-20	1.7×10 ⁻⁶	3
C-Dots			
4,7,10-trioxa-1,13-tridecanediamine	30-400	4.6×10 ⁻⁷	4
derived C-Dots			
Sodium citrate derived C-Dots	0-10	2×10 ⁻⁸	5
Eggshell derived C-Dots	0.05-10	9.8×10 ⁻⁹	This
			work

Table S1 Comparison of various GSH assays based on C-Dots that are derived from other carbon sources.

Reference:

1 N. Sohal, B. Maity and S. Basu, ACS Appl. Nano Mater., 2020, 3, 5955-5964.

2 S. Gogoi and R. Kan, New J. Chem., 2018, 42, 6399-6407.

- 3 D. Bano V. Kumar, V. K. Singh, and S. H. Hasan, New J. Chem., 2018, 42, 5814-5821.
- 4 D. Kong, F. Yan, Y. Luo, Y. Wang, L. Chen and F. Cui, *Anal. Methods*, 2016, 8, 4736-4743.
- 5 S. Liu, D. Wu, G. Li, Z. Lv, Z. Chen, L. Chen, G. Chen, L. Xia, J. You, and Y. Wu, *RSC Adv.*, 2016, **6**, 103169-10317.