Supporting Information for

Rhodamine 6G based efficient chemosensor for the trivalent metal ions (Al³⁺, Cr³⁺ and Fe³⁺) upon single excitation with applications in combinational logic circuits and memory devices

Dipankar Das^a, Rabiul Alam^a and Mahammad Ali^{a,*}

^aDepartment of Chemistry, Jadavpur University, Kolkata 700 032, India, Fax: 91-33-2414-6223, E-mail: <u>m_ali2062@yahoo.com</u>,

1. ¹ H NMR spectrum of L ³	Fig.S1.
2. ¹ H NMR spectrum of $[L^3+A1]^{3+}$ complex.	Fig. S1a.
3. 13 C-NMR of L ³	Fig. S2.
4. Mass spectrum of L ² in MeCN	Fig. S3.
5. Mass spectrum of L ³ in MeCN	Fig. S3a
6. Mass spectrum of [$L^{3}+Fe^{3+}$] complex in MeCN.	Fig. S3b.
7. Mass spectrum of [L^3+Al^{3+}] complex in MeCN.	Fig. S3c.
8. Mass spectrum of $[L^3+Cr^{3+}]$ complex in MeCN.	Fig. S3d.
9. FT-IR spectrum of L ³ in KBr pellet.	Fig. S4.
10. FT-IR spectrum of [L ³ +A1] ³⁺ complex in KBr pellet	Fig. S4a.
11. FT-IR spectrum of [L ³⁺ Cr] ³⁺ complex in KBr pellet	Fig. S4b
12. IR spectra of (L ³), [L ³ –Al ³⁺] and [L ³ –Cr ³⁺] complexes in MeCN	Fig.S4c
13. UV-Vis titration of L^3 with Al ³⁺ in H ₂ O /CH ₃ CN (7:3,v/v) in HEPES buffer	Fig. S5
pH 7.2	
14. UV-Vis titration of L^3 with Cr^{3+} in H ₂ O /CH ₃ CN (7:3,v/v) in HEPES buffer	Fig. S5a
pH 7.2	
15. Fluorometric titration of L^3 with Al^{3+} in H_2O /CH ₃ CN (7:3,v/v) in HEPES	Fig. S6
buffer pH 7.2	
16. Fluorometric titration of L^3 with Cr^{3+} in H_2O /CH ₃ CN (4:1,v/v) in HEPES	Fig.S6a
buffer pH 7.2	
17. Non-linear fitting of fluorescence titration curves for Fe ³⁺ , Al ³⁺ and Cr ³⁺	Fig.S6b
with $K_{\rm d}$ values	
18. Determination of S.D. of L^3 and LOD's for Fe ³⁺ , Al ³⁺ and Cr ³⁺	Fig. S7, S8, S8a
	and S8b
19. Jobs plot.	Fig.S9, Fig.S9a
	and Fig.S9b
20. Fluorometric titration of $[L^3+Fe]^{3+}$ with CN ⁻ in H ₂ O /CH ₃ CN (7:3,v/v) in	Fig. S10
HEPES buffer pH 7.2	

21. Fluorometric titration of $[L^3+A1]^{3+}$ with CN ⁻ in H ₂ O /CH ₃ CN (7:3,v/v) in	Fig.S10a
HEPES buffer pH 7.2	
22. Fluorometric titration of $[L^3+Cr]^{3+}$ with CN-in H ₂ O /CH ₃ CN (7:3,v/v) in	Fig. S10b
HEPES buffer pH 7.2.	
23. Fluorescence experiment to show the reversibility and reusability of the	Fig.S10c
receptor for sensing Fe ³⁺ by alternate addition of CN ⁻	
24. pH dependence of fluorescence responses of L^3 and its $[L^3-Fe^{3+}]$ complex	Fig.S11
25. pH study for Al^{3+} and Cr^{3+} complexes with L^3	Fig. S11a and
	S11b
26. Four-input OR-INHIBIT logic gate representation of the emission of L^3 with	Fig. S12
different input when monitoring the emission at 558 nm.	
27. Fluorescence response of the probe L^3 in presence of Au(III), Dy(III),	Fig. S13
Ga(III), Y(III), Sm(III), Ru(III) and Co(III) with respect to Fe^{3+} , Al^{3+} and Cr^{3+}	
28. Some previously representative trivalent sensors.	Fig. S14
29. Real water sample test with the probe	Fig. S15
	Fig. S16
30. Some previously reported rhodamine based trivalent sensors.	
	<u> </u>
31. Mechanism of spirolactum ring opening in the presence of M^{3+} (M=Fe, Cr,	Scheme S1
Al).	
32. A list of trivalent sensors along with some important parameters	Table S1
33. A list rhodamine based trivalent sensors along with some important	Table S2
parameters	
24 Determination of Ea3+ approximations in real water severals	Table S3
54. Determination of re^{-1} concentrations in real water samples.	

Fig. S1.¹H NMR spectrum of L^3 in DMSO-d₆, in Bruker 300 MHz instrument.

Fig. S1a.¹H NMR spectrum of $[L^3-Al^{3+}]$ complex in DMSO-d₆, in Bruker 300 MHz instrument.

Fig. S2.¹³C NMR spectrum of L³ in DMSO-d₆, in Bruker 300 MHz instrument.

Fig.S3. Mass spectroscopy of L^2 in MeCN.

Fig. S3a. Mass spectroscopy of L^3 in MeCN.

Fig. S3b. Mass spectroscopy of $[L^3 + Fe^{3+}]$ in MeCN.

Fig. S3c. Mass spectroscopy of $[L^3 + Al^{3+}]$ in MeCN.

Fig. S3d. Mass spectroscopy of $[L^3 + Cr^{3+}]$ in MeCN.

Fig. S4. FT-IR spectrum of L^3

Fig. S4a. FT-IR spectrum of $[L^3+Al^{3+}]$ Complex.

Fig. S4b. FT-IR spectrum of $[L^3+Cr^{3+}]$ Complex.

Fig.S4c. IR spectra of (L³), $[L^3-Al^{3+}]$ and $[L^3-Cr^{3+}]$ complexes in MeCN.

Fig. S5. (a) UV-VIS titration of $L^{3}(60 \ \mu\text{M})$ in H₂O- MeCN-(7:3, v/v) in HEPES buffer at pH 7.2 by the gradual addition of Al³⁺ (0-336 μ M). Inset (b)Nonlinear curve-fit of F.I vs. [Al³⁺] plot.

Fig. S5a. (a) UV-VIS titration of L³(60 μ M) in H₂O- MeCN-(7:3, v/v) in HEPES buffer at pH 7.2 by the gradual addition of Cr³⁺ (0-336 μ M). Inset (b)Nonlinear curve-fit of F.I vs. [Cr³⁺] plot.

Fig. S6.(a) Fluorescence titration of $L^{3}(60 \ \mu\text{M})$ in H₂O- MeCN-(7:3, v/v) in HEPES buffer at pH 7.2 by the gradual addition of Al³⁺ (0-160 μ M). Inset (b) Nonlinear curve-fit of F.I vs. [Al³⁺] plot.

Fig.S6a.(a) Fluorometric titration of $L^{3}(60 \ \mu\text{M})$ in H₂O- MeCN-(7:3, v/v) in HEPES buffer at pH 7.2 by the gradual addition of Cr³⁺ (0-160 μ M). Inset (b) Nonlinear curve-fit of F.I vs. [Cr³⁺] plot.

Fig.S6b.Non-linear fitting of fluorescence titration curves for Fe^{3+} , Al^{3+} and Cr^{3+} with K_d values.

Fig. S7. Determination of S.D. of the blank, $ligand(L^3)$ solution.

Fig.S8. Linear dyanamic plot of FI (at 558nm) vs $[Fe^{3+}]$ for the determination of S (slope).

 $LOD(Fe^{3+}) = 3 \times S.D/Slope$

= $(3 \times 2001.751 / 2.3307 \times 10^9)$ = 2.57 µM

Fig.S8a. Linear dyanamic plot of FI (at 558nm) vs [Al³⁺] for the determination of S (slope).

 $LOD(Al^{3+}) = 3x S.D/Slope$

 $= (3x\ 2001.751\ /7.66675x10^9$

 $= 0.78 \ \mu M$

Fig.S8b. Linear dyanamic plot of FI (at 558nm) vs [**Cr**³⁺] for the determination of S (slope).

 $LOD(Cr^{3+}) = 3 \times S.D/Slope$

= $(3 \times 2001.751 / 1.2566 \times 10^{10})$ = 0.47 μ M

Fig. S9. Job's plot between L^3 and Fe^{3+} for the confirmation of (1:1) binding.

Fig. S9a. Job's plot between L^3 and Al^{3+} for the confirmation of (1:1) binding.

Fig. S9b. Job's plot between L^3 and Cr^{3+} for the confirmation of (1:1) binding.

Fig. S10. Histogram of the fluorescence quenching [L³-Fe³⁺]complex by CN⁻ (100 μ M) towards L³ (60 μ M) in H₂O- MeCN-(7:3, v/v) in presence of different anions(100 μ M) in HEPES buffer at pH 7.2 with $\lambda_{ex} = 502$ nm, $\lambda_{em} = 558$ nm.

Fig. S10a.Histogram of the fluorescence quenching [L³-Al³⁺]complex by CN⁻ (100 μ M) towards L³ (60 μ M) in H₂O- MeCN-(7:3, v/v) in presence of different anions(100 μ M)in HEPES buffer at pH 7.2 with λ_{ex} = 502 nm, λ_{em} = 558 nm.

Fig. S10b.Histogram of the fluorescence quenching [L³-Cr³⁺]complex by CN⁻ (100 μ M) towards L³ (60 μ M) in H₂O- MeCN-(7:3, v/v) in presence of different anions(100 μ M) in HEPES buffer at pH 7.2 with $\lambda_{ex} = 502$ nm, $\lambda_{em} = 558$ nm.

Fig.S10c. Fluorescence experiment to show the reversibility and reusability of the receptor for sensing Fe^{3+} by alternate addition of CN^{-} .(a) Fluorescence intensity obtained during the titration of L^{3} - Fe^{3+} with CN^{-} followed by the addition of Fe^{3+} . (b) Fluorescent color changes after each addition of CN^{-} and Fe^{3+} sequentially.

Fig.S11. (A) pH dependence of fluorescence responses of L^3 and its $[L^3-Fe^{3+}]$ complex; (B) Fluorescent response of L^3 towards Fe^{3+} at different pH.

Fig. S11a. Fluorescence intensity observed at different pH for L³ and [L³+Al³⁺] (60 μ M) in H₂O /CH₃CN (7:3,v/v) with $\lambda_{ex} = 502$ nm, $\lambda_{em} = 558$ nm.

Fig. S11b. Fluorescence intensity observed at different pH for L³ and [L³+Cr³⁺] (60 μ M) in H₂O /CH₃CN (7:3,v/v) with $\lambda_{ex} = 502$ nm, $\lambda_{em} = 558$ nm.

Fig. S12. Four-input OR-INHIBIT logic gate representation of the emission of L^3 with different input when monitoring the emission at 558 nm.

Fig. S13. Fluorescence response of the probe L^3 in the presence of Au(III), Dy(III), Ga(III), Y(III), Sm(III), Ru(III) and Co(III) with respect to Fe³⁺, Al³⁺ and Cr³⁺

Fig. S14. Some previously representative trivalent sensors.

Fig. S15. Real water sample tested with the probe

Fig. S16. Some previously reported rhodamine based trivalent sensors.

Scheme S1. Mechanism of spirolactum ring opening in the presence of M³⁺(M=Fe, Cr, Al).

Probe	Solvent	$\lambda_{ex} (\lambda_{em}) / nm$	LOD	$K_{f}(M^{-1})$	Ref
					no.
1	Pure CH ₃ CN	437(475)	0.5µM (Cr ³⁺) 0.3µM(Al ³⁺) 0.2µM(Fe ³⁺)	1.58 x 10 ⁴ M ⁻¹ (Cr ³⁺); 6.46 x 10 ⁹ M ⁻² (Al ³⁺) 1.26 x 10 ⁵ M ⁻¹ (Fe ³⁺);	1
2	CH ₃ CN-HEPES buffer solution (40/60, v/v, pH = 7.4)	342 (484)	25µM(Cr ³⁺) 23µM(Al ³⁺) 20µM(Fe ³⁺)	$\begin{array}{c} 1.0852 \ x \ 10^4 \ M^{-1}(Fe^{3+}) \\ 8.770 \ x \ 10^3 \ M^{-1} \ (Al^{3+}) \\ 5.676 \ x \ 10^3 \ M^{-1}(Cr^{3+}) \end{array}$	2
3	CH ₃ CN–HEPES buffer solution (1:1, pH = 7.4)	460 (675)	93 nM(Cr ³⁺) 32 nM (Al ³⁺) 90 nM(Fe ³⁺)	Not determined	3
4	THF–H ₂ O (8:2) mixture	330 (430)	0.36 nM (Cr ³⁺) 0.38 nM (Fe ³⁺) 0.38 nM (Al ³⁺)	Not determined	4
5	$H_2O:EtOH = 8:2$	390(563) 390(527)	0.20µM(Cr ³⁺) 0.50µM(Al ³⁺)	5.50 x 10 ⁴ M ⁻¹ (Cr ³⁺) 2.00x 10 ⁴ M ⁻¹ (Al ³⁺);	5
6	CH ₃ OH–H ₂ O (6 : 4, v/v)	330(582)	$\begin{array}{c} 1.74 \text{ nM (Al}^{3+}) \\ 2.36 \ \mu\text{M (Cr}^{3+}) \\ 2.90 \ \mu\text{M (Fe}^{3+}) \end{array}$	$\begin{array}{c} 1 \text{ x } 10^4 \text{M}^{-1} (\text{A}\text{I}^{3+})\text{;} \\ 2.6 \text{ x } 10^2 \text{M}^{-1} (\text{C}\text{r}^{3+}) \\ 1.2 \text{ x } 10^2 \text{M}^{-1} (\text{F}\text{e}^{3+})\text{;} \end{array}$	6
7	CH ₃ CN	Colorimetric	$\begin{array}{c} 2.16\times 10^{-6}M(Al^{3+})\\ 1.27\times 10^{-8}M(Cr^{3+})\\ 5.03\times 10^{-8}M(Fe^{3+}) \end{array}$	$\begin{array}{c} 3.451\times 10^3 M^{-1}(Al^{3+})\\ 3.751\times 10^6M^{-1}(Cr^{3+})\\ 6.078\times 10^6M^{-1}(Fe^{3+}) \end{array}$	7
8	Methanol:water (7:3, v/v)	500(552)	1.18nM(Al ³⁺) 1.80nM(Cr ³⁺) 4.04 nM(Fe ³⁺)	$\begin{array}{c} 6.92 \pm 0.18 \mu M \; (Al^{3+}) \\ 4.90 \pm 0.67 \; \mu M \; (Fe^{3+}) \\ 6.79 \pm 0.34 \; \mu M \; (Cr^{3+}) \end{array}$	8
9	1:1 methanol-water	365(509)	$\begin{array}{c} 1.6{\times}10^{-6}~M(Al^{3+})\\ 2.66{\times}10^{-6}M(Cr^{3+})\\ 7.99{\times}10^{-7}M(Fe^{3+}) \end{array}$	Not determined	9
10	CH ₃ CN	365(465)	$\begin{array}{c} 1.06 \times 10^{-7} \text{M}(\text{Fe}^{3+}) \\ 1.11 \times 10^{-7} \text{M}(\text{Cr}^{3+}) \\ 1.17 \times 10^{-7} \text{M}(\text{Al}^{3+}) \end{array}$	$\begin{array}{c} 2.25 \times 10^{6} M^{-2} (Fe^{3+}) \\ 2.24 \times 10^{6} M^{-2} (Cr^{3+}) \\ 2.26 \times 10^{6} M^{-2} (Al^{3+}) \end{array}$	10

Probe	Solvent	$\lambda_{ex} (\lambda_{em})/$	LOD	$K_{f}(M^{-1})$	Ref
		nm			no.
11	CH ₃ CN: Tris- buffer(1:1, v/v)	520(586)	$\begin{array}{c} 1.10 \times 10^{-5}M(Fe^{3+})\\ 3.20 \times 10^{-7}M(Al^{3+})\\ 2.55 \times 10^{-5}M(Cr^{3+}) \end{array}$	$\begin{array}{c} 6.13 \ x \ 10^4 \ M^{\text{-1}}(\text{Fe}^{3+}) \\ 3.14 \ x \ 10^3 \ M^{\text{-1}} \ (\text{Al}^{3+}) \\ 2.26 \ x \ 10^3 \ M^{\text{-1}}(\text{Cr}^{3+}) \end{array}$	11
12	methanol/H ₂ O (1:1, v/v,)	510(555)	0.29mM (Fe ³⁺) 0.34mM (Al ³⁺) 0.31 mM (Cr ³⁺)	6.7 x 10 ⁴ M ⁻¹ (Fe ³⁺) 8.2 x 10 ⁴ M ⁻¹ (Al ³⁺) 6.0 x 10 ⁴ M ⁻¹ (Cr ³⁺)	12
13	H ₂ O/CH ₃ CN (4:1, v/v)	502(558)	$\begin{array}{c} 1.28 \ \mu M \ (Fe^{3+}) \\ 1.34 \ \mu M \ (Al^{3+}) \\ 2.28 \ \mu M \ (Cr^{3+}) \end{array}$	9.4 x 10 ³ M ⁻¹ (Fe ³⁺) 1.34 x 10 ⁴ M ⁻¹ (Al ³⁺) 8.37 x 10 ³ M ⁻¹ (Cr ³⁺)	13
14	CH ₃ CN–H ₂ O (3:2, v/v)	520(582)	3.2 μM (Fe ³⁺) 4.8 μM (Al ³⁺) 0.93 μM (Cr ³⁺)	Not determined	14
15	Methanol:water (9:1, v/v)	500(550)	$\begin{array}{c} 14.0 \text{ nM (Fe}^{3+}) \\ 15.80 \mu\text{M (Al}^{3+}) \\ 0.93 \mu\text{M (Cr}^{3+}) \end{array}$	$\begin{array}{c} 8.74 \times 10^4 (Fe^{3+}) \\ 6.24 \times 10^4 (Cr^{3+}) \\ 1.47 \times 10^5 (Al^{3+}) \end{array}$	15
16	H ₂ O/CH ₃ CN (7:3, v/v, pH 7.2, 20 mM HEPES buffer	502(558)	$\begin{array}{c} 2.57\mu M \ (\ Fe^{3+}) \\ 0.78 \ \mu M(Al^{3+}) \\ 0.47 \ \mu M(Cr^{3+}) \end{array}$	$\begin{array}{c} 5.15 x 10^4 \ M^{-1} \ (Fe^{3+}) \\ 3.17 \ x \ 10^4 \ M^{-1} (Al^{3+}) \\ 4.42 \ x \ 10^5 \ M^{-1} (Cr^{3+}) \end{array}$	In this work

Table S2. A list rhodamine based trivalent sensors along with some important parameters

Table S3. Determination of Fe³⁺ concentrations in real water samples.

Place	Fe ³⁺ added(µM)	Fe ³⁺ found(µM)
Hooghly River water	32	32.08
Baruipur canal water	40	40.12
Sonarpur (tube well water)	56	56.37
Damdam (tube well water)	80	80.59

References

- 1. A. Barba-Bon, A.M.Costero, S.Gil, M. Parra, J. Soto, R. Martínez-Má-ñez and F. Sancenón, *Chem. Commun.*, 2012, **48**, 3000.
- 2. S. Goswami, K. Aich, A. K. Das, A. Manna and S. Das, RSC Advances, 2013, 3, 2412.
- 3. S. Goswami, K. Aich, S. Das, A. K. Das, D. Sarkar, S. Panja, T. K.Mondal and S. Mukhopadhyay, *Chem. Commun.*, 2013, **49**, 10739.

- 4. M. Venkateswarulu, T. Mukherjee, S. Mukherjee and R. R.Koner, *Dalton Trans.*, 2014, **43**, 5269.
- 5. J. Wang,Y. Li,N. G. Patel, G. Zhang, D. Zhou and Y. Pang, *Chem. Commun.*, 2014, **50**, 12258.
- 6. S. Paul, A. Manna and S. Goswami, *Dalton Trans.*, 2015, 44,11805.
- 7. P. N. Borase, P. B. Thale, S. K. Sahoo and G.S. Shankarling, *Sensors and Actuators B*, 2015, **215**, 451.
- 8. S. Dey, S. Sarkar, D. Maity and P. Roy, *Sensors and Actuators B*, 2017, **246**, 518.
- 9. S. Samanta, S. Goswami, A. Ramesh and G. Das, *Sensors and Actuators B*, 2014, **194**,120.
- T. Simon, M. Shellaiah, V. Srinivasadesikan, C.-C. Lin, F. -H. Ko, K. Wen Sun and M.-C. Lin, *Sensors and Actuators B*, 2016, 23,18.
- 11. X. Wan, T. Liu, H. Liu, L. Gu, Y. Yao, RSC Adv., 2014, 4, 29479
- 12. R. Alam, R. Bhowmick, A.S.M. Islam, A.katarkar, K.Chaudhurib and M. Ali, New J. Chem., 2017, **41**, 8359.
- 13. D. Das, R. Alam, A. Katarkar and M. Ali Photochem. Photobiol. Sci., 2019, 18, 242.
- 14. H.X. Yu, J. Zhi, Z.F. Chang, T.Shen, W.L.Ding, X. Zhang and J.L. Wang, Mater. Chem. Front., 2019, **3**, 151
- 15. A. Roy, S. Das, S. Sacher, S. K. Mandal and P. Roy, Dalton Trans., 2019, 48, 17594.