Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Tandem Förster resonance energy transfer induced visual ratiometric fluorescence sensing for tetracyclines based on zeolitic imidazolate framework-8 incorporated with carbon dots and safranine T

Xiangying Sun^a*, Xiaolin Xin^b, Wei He^a, Xuegong Cao^a, Jiangshan Shen^a

Figure

Fig.S1 (a)TEM images and particle size distribution(inset) of the CDs; (b) UV-vis absorption spectra(black), FL excitation spectra(red) and FL emission spectra(blue) of CDs. (c) FT-IR spectra of CDs

Fig. S2. SEM images of the CDs/ST@ZIF-8 synthesised with different amount of CDs (a) CDs 1/ST@ZIF-8, (b) CDs 2/ST@ZIF-8, (c) CDs 4/ST@ZIF-8, (d) CDs 8/ST@ZIF-8

Fig. S3. SEM images of (a) CDs2/ST@ZIF-8, (b) CDs4/ST@ZIF-8 prepared with 25% methanol content in the methanol-water mixed solvent

Fig. S4. SEM images of (a) CDs/ST1@ZIF-8, (b) CDs/ST2@ZIF-8, (c) CDs/ST4@ZIF-8, (d) CDs/ST8@ZIF-8

 $\label{eq:spectra} Fig. ~S5.~(a)~Fluorescence~spectra~and~(b)~the~relationship~curve~between~F_{570~nm}/F_{440~nm}~and~tetracycline~concentration~CDs@ZIF-8(black), CDs/ST1@ZIF-8(red), CDs/ST2@ZIF-8(blue), CDs/ST4@ZIF-8(green)~and~CDs/ST8@ZIF-8(pink)~curve~between~F_{570~nm}/F_{440~nm}~and~tetracycline~concentration~curve~between~F_{570~nm}/F_{440~nm}~and~tetracycline~concentration~curve~between~F_{570~nm}/F_{440~nm}~and~tetracycline~concentration~curve~between~F_{570~nm}/F_{440~nm}~and~tetracycline~curve~between~F_{570~nm}/F_{440~nm}/F_{440~nm}~and~tetracycline~curve~between~F_{570~nm}/F_{440~nm}~and~tetracycline~curve~between~F_{570~nm}/F_{440~nm}/F_{440~nm}~and~tetracycline~curve~between~F_{570~nm}/F_{440~nm}/F$

Fig. S6. Effect on fluorescence sensing system (containing 20 μ M tetracycline hydrochloride) (a) probe concentration, (b) response time, (c) pH, (d) buffer type

Tables

Probe	Linear equation	Linear range	R ²
CDs@ZIF-8	F ₀ -F/F ₀ =0.0480C-0.00343	1.0~10 <i>μ</i> Μ	0.992
CDs/ST 1@ZIF-8	F _{570nm} /F _{440nm} =0.0331C+0.0739	0.5~10 <i>μ</i> Μ	0.995
CDs/ST 2@ZIF-8	F _{570 nm} /F _{440nm} =0.0420C+0.108	0.5~10 <i>μ</i> Μ	0.994
CDs/ST 4@ZIF-8	F _{570 nm} /F _{440nm} =0.0845C+0.234	0.5~10 <i>μ</i> Μ	0.991
CDs/ST 8@ZIF-8	F _{570 nm} /F _{440nm} =0.159C+0.357	0.5~10 <i>μ</i> Μ	0.995

Table S1. Response of different probes to tetracycline

Table S2 Comparison of CDs/ST@ZIF-8 with different methods for the detection of tetracycline

Sensor	Linear range	LOD	Ref.
CDs	10-400 μM	6.0 μM	[1]
N-CQDs	3.3-32.3 μM	0.746 μM	[2]
Tb(sbdc) _{1.5} (H ₂ O) ₂	0-30 μM	0.28 μM	[3]
NH ₂ -MIL-53(AI)	0-86.67 μM	0.062 μM	[4]
BSA-AuNCs	0.2-10.0 μM	0.065 μM	[5]
CDs/ST@ZIF-8	0.2-10.0 μM	0.046 μM	This work

Table S3 Effect of interfering components on the detection of tetracycline

Coexiting substance	Concentration (µM)	Change of fluorescence intensity (%)	Coexiting substance	Concentrati on (µM)	Change of fluorescence intensity (%)
Mg^{2+}	100	2.29	Hg^{2+}	20	1.48
Al^{3+}	100	8.90	Arginine	100	-3.18
K^+	100	8.34	Histidine	100	8.78
Na^+	100	6.88	Lysine	100	-0.54
Ca^{2+}	50	-5.58	Enrofloxacin	50	4.26
Cd^{2+}	50	3.01	Furantone	50	3.16
Cr^{2+}	50	5.16	Thiamphenicol	50	0.23
Mn^{2+}	50	5.22	Metronidazole	50	0.60

System	Lifetime of TC [ns]	Lifetime of CDs	Energy transfer
			efficiency (Φ ET)
		[ns]	[%]
ZIF-8	1.509(a)		
CDs/ST@ZIF-8		6.320	
	2.508(a)/1.996(b)/	5.408(a)/5.129(b)/	
CDS/ST@ZIF-8	1.614(c)	4.939(c)	14.43(d)/39.83(e)

Table S4. Lifetime of CDs/ST@ZIF-8 system and energy transfer efficiency calculation

 $^{\rm (a)(b)(c)}$ represents the addition of TC 10, 20, 40 $\mu M,$ $^{\rm (d)} \Phi_{\rm ET}$ from CDs to TC, $^{\rm (e)} \Phi_{\rm ET}$ from TC to ST

T	Table S5. The detection of tetracycline of the tap water samples			
Spiked/µM	Detected/µM	Recovery %	RSD%(n=3)	
1.00	1.03	103.3	0.30	
2.00	1.80	90.1	1.28	
4.00	3.73	93.3	0.74	
10.0	10.1	101.3	1.40	

References

 [1] Y Yan, J H Liu, R S Li, Y F Li, C Z Huang, S J Zhen. Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride. Anal Chim Acta, 1063(2019), pp. 144-151

[2] H Qi, M Teng, M Liu, S Liu, J Li, H Yu, C Teng, Z Huang, H Liu, Q Shao, A Umar, T Ding, Q Gao, Z Guo. Biomass-derived nitrogen-doped carbon quantum dots: Highly selective fluorescent probe for detecting Fe³⁺ ions and tetracyclines. J Colloid Interface Sci, 539(2019), pp. 332-341

[3] Q Liu, D Ning, W J Li, X M Du, Q Wang, Y Li, W J Ruan. Metal-organic frameworkbased fluorescent sensing of tetracycline-type antibiotics applicable to environmental and food analysis. Analyst, 144(2019), pp. 1916-1922

[4] C Li, L Zhu, W Yang, X He, S Zhao, X Zhang, W Tang, J Wang, T Yue, Z Li. Aminofunctionalized Al–MOF for fluorescent detection of tetracyclines in milk. J Agric Food Chem, 67(2019), pp. 1277-1283

[5] L Meng, C Lan, Z Liu, N Xu, Y Wu. A novel ratiometric fluorescence probe for highly sensitive and specific detection of chlorotetracycline among tetracycline antibiotics. Anal Chim Acta, 1089(2019), pp. 144-151