Electronic Supporting Information 1 2 A ratiometric fluorescence strategy based on polyethyleneimine 3 surface-modified carbon dots and Eosin Y for ultrasensitive 4 determination of protamine and trypsin. 5 Wenying Sun^a, Feng Zhang^a, Mengke Wang^a, Nan Wang^a, Guannan Wang^{b,*}, Xingguang Su^{a,*} 6 a. Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China 7 b. College of Medical Engineering, Jining Medical University, Jining, 272067, China 8 9 10 11 12 13 *Corresponding author 14 15 Xingguang Su *Tel.*: +86-431-85168352 16 17 *E-mail address:* <u>suxg@jlu.edu.cn</u> 18 Guannan Wang 19 *E-mail address: chemwangguannan@126.com* 20 21 22

1 Reagents

The chemical reagents used in the experiments are of analytical grade without 2 further purification. The deionized water used in this experiment has a resistivity 3 greater than 18 MΩ cm-1. PEI was provided by Aladdin Industrial Company. Tris-4 HCl was purchased from Sinopharm Chemical Reagent Co. Ltd. Eosin Y, Protamine, 5 Arg, AA, Fru, Cys, GSH, Gly, Asp, ATP, Urease, G-ox, LZM and Pepsinand reduced 6 L-glutathione (GSH) were purchased from Sangon Biotech (Shanghai). Potassium 7 Chloride, Magnesium Chloride, Zinc Sulfate Sodium Chloride and Urea were 8 purchased from Beijing Chemical Works. Glucose and trypsin were purchased from 9 Aladdin. This experiment used a 10 mM Tris-HCl buffer solution to adjust the pH of 10 the reaction. And the configured solutions were all stored at 4° C. 11

12

13 Instrumentation

RF-5301 PC 14 Fluorescence (FL) spectra were recorded by а spectrofluorophotometer(Shimadzu, Japan). Ultraviolet-visible (UV-vis) absorption 15 spectra were acquired with the U-5100 UV-vis spectrophotometer. Powder X-ray 16 diffraction (XRD) patterns were conducted on a Rigaku D-Max 2550 diffractometer 17 (Rigaku, Japan). Fourier transform infrared (FT-IR) spectra were recorded on a 18 Nicolet 400 Fourier transform infrared spectrometer. Transmission electron 19 microscope (TEM) was collected on a JEM-2100F Transmission Electron Microscope 20 21 (JEOL, Japan). All temperature measurements were accomplished by using a water 1 bath. All pH measurements and the configured buffer solutions were performed using

2 a	PHS-3C	pН	meter	(Tuopu	Со.,	Hangzhou,	China).
-----	--------	----	-------	--------	------	-----------	---------

3 Fig. S2. Stern–Volmer curves for the CDs-PEI/Eosin Y/Protamine system at three

4 different temperatures. (F_0 and F were the fluorescence intensity of Eosin Y in the

5 absence and presence of protamine, respectively.)

6

1 Table S1 Comparison with previous methods for the detection of protamine.

Methods	Materials	Linear range	LOD	Reference
		(µg/mL)	(µg/mL)	

Fluorescence	water soluble Perylene diimi	ides 0.1-13 μg /mL	0.09 µg /mL	1
Methods	Materials	Linear range	LOD	Reference
		sv 4-22 us /mI		<u>_</u>
Chemiluminesce	gold nanoclusters	2.4-48 μg/mL	0.19 μg/mL	7
nce	carbon electrode			
Colorimetric	Anionic poly(2-(2-(4-	0.1-30 μg /mL	0.1 μg /mL	3
	methylthiophen-3			
	-yloxy)ethyl)malonate acid)			
Fluorescence	a pyrene derivative	0.5–8 µg/mL	0.5 μg/mL	4
Fluorescence	BZA-BOD@ZIF-90	0.25-0.4 μg/mL	$0.07~\mu g/mL$	5
Robust reverse	Zorbax-SB C8 Column	0.5–5 mg/ml	0.06 mg/mL	6
phase-HPLC				
Fluorescence	PEI-CDs and Eosin Y	0.1-5.2 μg/mL	0.03 µg/mL	This work

Chemiluminesce	bovine serum albumin	0.01-50 µg /mL	9 ng/mL	8
nce	(BSA)-stabilized gold			
	nanoclusters (Au NCs)			
Electrochemical	luminol and black	$0.1-5\ \mu g\ /mL$	63.3 ng/mL	9
	phosphorus nanosheets			
Colorimetric	silver nanoparticles	2.5-200 ng/mL	2 ng/mL	10
	(AgNPs)			
Fluorescence	silicon quantum dots	0-40 ng/mL	8 ng/mL	11
	(SiQDs) and triangular			
	silver nanoprisms			
	(TSNPRs)			
Fluorescence	AgInZnS QD	0.1 -4 μg /mL	$0.04~\mu g \ /mL$	12
Fluorescence	PEI-CDs and Eosin Y	0.4-56 ng/mL	0.21 ng/mL	This work

1 Table S2 Comparison with previous methods for the detection of trypsin

2 **References**

- 3 1. H. Cheng, Y. Zhao, H. Xu, Y. Hu, L. Zhang, G. Song and Z. Yao, Dyes and
- 4 Pigments, 2020, 180.

- 1 2. H. Y. Huo, H. Q. Luo and N. B. Li, Microchimica Acta, 2009, 167, 195-199.
- 2 3. Z. Yao, W. Ma, Y. Yang, X. Chen, L. Zhang, C. Lin and H. C. Wu, Org Biomol
- 3 *Chem*, 2013, **11**, 6466-6469.
- 4 4. B. Tang, Y. Yang, G. Wang, Z. Yao, L. Zhang and H. C. Wu, *Org Biomol Chem*,
 5 2015, 13, 8708-8712.
- 6 5. L. Liu, J. Dai, Y. Ji, B. Shen, X. Zhang and R. J. Linhardt, *Sensors and Actuators B:*7 *Chemical*, 2021, 341.
- 8 6. D. Awotwe-Otoo, C. Agarabi, P. J. Faustino, M. J. Habib, S. Lee, M. A. Khan and
- 9 R. B. Shah, J Pharm Biomed Anal, 2012, 62, 61-67.
- 10 7. Y. He, Y. Sui, S. Xu and F. Chen, *RSC Advances*, 2016, 6, 4657-4662.
- 11 8.X. You, Y. Li, B. Li and J. Ma, *Talanta*, 2016, 147, 63-68.
- 12 9. H. Liu, H. Yin, Y. Dong, H. Ding and X. Chu, Analyst, 2020, 145, 2204-2211.
- 13 10. P. Miao, T. Liu, X. Li, L. Ning, J. Yin and K. Han, *Biosens Bioelectron*, 2013, 49,
 14 20-24.
- 15 11. J. Zhou, F. Zhang, R. Zhao, S. Liu, W. Li, F. He, S. Gai and P. Yang, Sensors and
- 16 Actuators B: Chemical, 2021, **340**.
- 17 12. Y. Liu, F. Zhang, X. He, P. Ma, Y. Huang, S. Tao, Y. Sun, X. Wang and D. Song,
- 18 Sensors and Actuators B: Chemical, 2019, 294, 263-269.
- 19