Electronic supplementary information for

Colorimetric Detection of Water Contents in Organic Solvent via

Smartphone with Fluorescent Ag Nanoclusters

Ningxin Kong," Hao Yuan," Huangmei Zhou," Yu Zhao," Sanjun Zhang

^a State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road,

Shanghai 200241, China

^b Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

^cNYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd., Shanghai 200062, China.

*Correspondence to S.Z. (email: sjzhang@phy.ecnu.edu.cn)

Supporting materials

Figure S1: Infrared spectra of PMVEM and PMVEM-Ag NCsS3
Figure S2: EDX of PMVEM-Ag NCsS3
Figure S3: The UV-Vis absorption spectra of Ag NCs in ethanolS3
Figure S4: The photograph of samples in ethanol under the excitation of 365 nmS4
Figure S5: The colour of PMVEM-Ag NCs in ethanol under natural light
Figure S6: TEM image of PMVEM-Ag NCs dispersed in DMSOS4
Figure S7: DLS of PMVEM-Ag NCs measured in water, DMSO and ethanol
Figure S8: The emission spectra PMVEM-Ag NCs in ethanol
Figure S9: The response time of PMVEM-Ag NCs in ethanolS5
Figure S10: The fluorescence spectra of PMVEM-Ag NCs measured in different time.S6
Figure S11: Schematic illustration of water detection
Figure S12: The detection result determined by different brands and models
smartphone and different kinds of applications
Figure S13: Colorimetric smartphone-based detection of water contents in
DMSO
Figure S14: The linear relationship between R value and water contents in
ethanolS7
Table S1: The color data of Ag NCs in DMSO. S8
Table S2: The color data of Ag NCs in ethanol. S9
Table S3: Comparison of detection of water in ethanol based on different fluorescence
nanomaterials

Fig. S1. Infrared spectra of PMVEM and PMVEM-Ag NCs.

Fig. S2. (A) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of PMVEM-Ag NCs. (B) The corresponding elemental mapping of PMVEM-Ag NCs. (C) The elemental mapping of Ag in PMVEM-Ag NCs.

Fig. S3. The UV-Vis absorption spectra of Ag NCs in ethanol with different water contents from 3.3% to 100%. The Ag NCs were directly added into the ethanol solvent with different water contents.

Fig. S4. The picture of samples in ethanol with water contents from 5% to 95% under UV excitation at 365 nm. The Ag NCs were directly added into the ethanol solvent with different water contents.

Fig. S5. The colour of PMVEM-Ag NCs in ethanol with different water contents under natural light.

Fig. S6. TEM image of PMVEM-Ag NCs dispersed in DMSO.

Fig. S7. Dynamic light scattering (DLS) of PMVEM-Ag NCs measured in water (A), DMSO (B) and ethanol (C). The respective hydrodynamic diameter is shown in the figure.

Fig. S8. Emission spectra of PMVEM-Ag NCs in ethanol with the increasing of water contents from 0% to 20%.

Fig. S9. The response time of PMVEM-Ag NCs in ethanol.

Fig. S10. The fluorescence spectra of PMVEM-Ag NCs dispersed in ethanol with 94% water at different dates (Feb./08/2021 and Mar./04/2021).

Fig. S11. Schematic illustration of water detection in organic solvents by smartphone through color analysis application (Color Picker) and linear analysis application (Regression).

Fig. S12. (A) The linear relationship between G/B value and water contents obtained by Huawei P20pro and iPhone X_{R} . (B) The linear relationship between G/B value and water contents in the same image analyzed by Color Picker and ColorMeter.

Fig. S13. (A) The picture of sample in DMSO with different water contents under 365 nm UV excitation. (B) CIE diagram displaying the (x, y) color coordinates of samples with different water contents in DMSO. (C) The change of color determined by RGB model in different water contents in DMSO. (D) The linear relationship between the ratio of G value and B value (G/B value) and the water contents in DMSO.

Fig. S14. The linear relationship between R value and water contents in ethanol expressed as y = -2.6072x + 282.5491 ($R^2 = 0.9854$) with a detection limit of 1.51%. The water contents were determined to be 25.0% and 27.1% in 65 degrees white wine and 75% medical alcohols.

Color	Water content (%)	R value (a.u.)	G value (a.u.)	B value (a.u.)
	20	251	248	153
	30	247	233	144
	40	234	216	136
	50	212	191	130
	60	180	159	110
	70	153	139	108
	80	126	120	100
	90	105	108	92
	100	91	98	84

Table S1. The color data with colorimetric smartphone-based detection of water contents in DMSO.

Color	Water content (%)	R value (a.u.)	G value (a.u.)	B value (a.u.)
	20	227	206	116
	25	222	195	117
	30	213	182	115
	35	190	166	114
	40	184	160	117
	45	166	143	116
	50	153	137	115
	55	137	129	115

Table S2. The color data with colorimetric smartphone-based detection of water contents in ethanol.

Table S3. Comparison of detection of water in ethanol based on different fluorescence nanomaterials.

Methods/Materials	Limit of detection (LOD)	Linear detection range	Comments	Ref.
CQDs	0.01%	0.01%~10%	Narrow detection range and single-emission	10
RCDs	0.36%	10%~60%	Single-emission	11
Eu-MOFs/N, S-CDs	0.03%	0.05%~4%	Narrow detection range	24
CDs-CuNCs	0.95%	2.5%~45%	Low accuracy	28
PMVEM-Ag NCs	4.48%	20%~55%	Intrinsically dual- emission and broad detection range	This work