Supporting information

Standardization of Raman Spectra using Variable

Penalty Dynamic Time Warping

Qingyu Xu¹, Hongju Chen², Shaoqing Ye², Yongming Zeng², Hongmei Lu¹, Zhimin Zhang^{1,*}

<u>1. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR</u> <u>China.</u>

2. Xiamen PERSer Nanotechnology Co. Ltd., Xiamen 361005, China

E-mail: zmzhang@csu.edu.cn

Contents:

- Fig.S1
 Standardization result and warping path between i-Raman Plus / PERS-D900-R spectrometer. (a-b)

 the fused spectra of i-Raman Plus / PERS-D900-R, which before and after standardization (c) Warping path between i-Raman Plus / PERS-D900-R spectrometer.
- Fig.S2 Standardization result and warping path between i-Raman Plus / A5 268137R spectrometer. (a-b) the fused spectra of i-Raman Plus,/ A5 268137R which before and after standardization (c) Warping path between i-Raman Plus,/ A5 268137R spectrometer.
- Fig.S3 Standardization result and warping path between i-Raman Plus / PERS-F900 spectrometer. (a-b) the fused spectra of i-Raman Plus,/ PERS-F900, which before and after standardization (c) Warping path between i-Raman Plus,/ PERS-F900 spectrometer .
- Fig.S4 Standardization result and warping path between i-Raman Plus / PERS-D600 spectrometer. (a-b) the fused spectra of i-Raman Plus / PERS-D600, which before and after standardization (c) Warping path between i-Raman Plus / PERS-D600 spectrometer .
- <u>Fig.S5 Standardization result and warping path between i-Raman Plus / PERS-SR530 spectrometer. (a-b) the</u> <u>fused spectra of i-Raman Plus / PERS-SR530, which before and after standardization (c) Warping</u> <u>path between i-Raman Plus / PERS-SR530 spectrometer .</u>
- Table S1. Details of the standardized results of each group of Raman instruments

Table S2. Results of Raman standardization between RS-VPdtw and MWFFT

Table S3. The result of control experiment using RS-VPdtw

Table S4. MWFFT standardized results preprocessed by airPLS and ALS method

Fig.S1 Standardization result and warping path between i-Raman Plus / PERS-D900-R spectrometer. (a-b) the fused spectra of i-Raman Plus / PERS-D900-R, which before and after standardization (c) Warping path between i-Raman Plus / PERS-D900-R spectrometer.

Fig.S2 Standardization result and warping path between i-Raman Plus / A5 268137R spectrometer. (a-b) the fused spectra of i-Raman Plus,/ A5 268137R which before and after standardization (c) Warping path between i-Raman Plus,/ A5 268137R spectrometer.

Fig.S3 Standardization result and warping path between i-Raman Plus / PERS-F900 spectrometer. (a-b) the fused spectra of i-Raman Plus,/ PERS-F900, which before and after standardization (c) Warping path between i-Raman Plus,/ PERS-F900 spectrometer.

Fig.S4 Standardization result and warping path between i-Raman Plus / PERS-D600 spectrometer. (a-b) the fused spectra of i-Raman Plus / PERS-D600, which before and after standardization (c) Warping path between i-Raman Plus / PERS-D600 spectrometers.

Fig.S5 Standardization result and warping path between i-Raman Plus / PERS-SR530 spectrometer. (a-b) the fused spectra of i-Raman Plus / PERS-SR530, which before and after standardization (c) Warping path between i-Raman Plus / PERS-SR530 spectrometer.

Table S1. Details of the standardized results of each group of Raman instruments Please see "Table S1.xlsx" for more details

 Table S2. Results of Raman standardization between RS-VPdtw and MWFFT

 Please see "Table S2.xlsx" for more details

	PERS-F900	
<u>i-Raman Plus</u>	Samples	After
	Pymetrozine	0.4736
	acetone	<u>0.0864</u>
	<u>carbendazim</u>	<u>0.1625</u>
	<u>Enrofloxacin</u>	0.2465
<u>aspirin</u>	ascorbic acid	<u>0.1087</u>
	hexamethylenetetramine	<u>0.1747</u>
	Chloramphenicol	0.0402
	Lemon yellow	<u>0.1634</u>
	<u>Trichloromethane</u>	<u>0.0213</u>
	Sudan 1	0.1432
	Sodium nitrate	<u>0.0278</u>
	Ethanol	0.0521

Table S3. The resules of control experiment using RS-VPdtw

<u>Table S4. MWFFT standardized results preprocessed by airPLS and ALS method</u>				
Samples	<u>RS-VPdtw</u> –	MWFFT		
		<u>airPLS</u>	ALS	
<u>aspirin</u>	<u>0.9553</u>	0.8785	<u>0.8968</u>	
Pymetrozine	0.9571	0.8344	<u>0.8516</u>	
acetone	<u>0.991</u>	<u>0.9684</u>	<u>0.9770</u>	
<u>carbendazim</u>	0.9842	<u>0.8454</u>	<u>0.8562</u>	
Enrofloxacin	<u>0.9677</u>	0.9366	<u>0.9603</u>	
ascorbic acid	0.9707	<u>0.9461</u>	<u>0.9601</u>	
hexamethylenetetramine	0.9514	0.9055	<u>0.8597</u>	
Chloramphenicol	0.9834	<u>0.9585</u>	<u>0.9435</u>	
Lemon yellow	<u>0.9879</u>	0.9643	<u>0.9785</u>	
Trichloromethane	<u>0.9688</u>	<u>0.9512</u>	<u>0.8974</u>	
Sudan 1	<u>0.9189</u>	<u>0.9553</u>	<u>0.9143</u>	
Sodium nitrate	<u>0.9705</u>	<u>0.9059</u>	<u>0.9079</u>	
Ethanol	<u>0.9679</u>	<u>0.9598</u>	<u>0.9650</u>	

Table S4. MWFFT standardized results preprocessed by airPLS and ALS method