Electronic Supporting Material

Ionic covalent organic framework for rapid extraction of polar organic acids in environmental waters

Jing Sun^a, Fang Xue^a, Cui-Ling Gao^{b*}, Lei Li^a, Hai-Long Jiang^{a*}, Ru-Song Zhao^a, Jin-Ming Lin^c

- ^a Qilu University of Technology (Shandong Academy of Science), Shandong Analysis
 and Test Center, School of Environmental Science and Engineering, Jinan, 250014,
 P.R. China
- ^b Shandong Institute for Product Quality Inspection, Jinan, 250014, P. R. China
- ^c Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China

^{*} Corresponding author. Phone: + 86-531-82605343; E-mail: j05hx121@126.com.

Contents

- 1. **Figure S1.** Synthesis diagram of Fe₃O₄@EB-TFB-iCOF
- 2. Figure S2. Zeta potential analysis of Fe₃O₄@EB-TFB-iCOF
- 3. Table S1. Reproducibility of Fe₃O₄@EB-TFB-iCOF
- 4. **Table S2.** Extraction selectivity of Fe₃O₄@EB-TFB-iCOF
- 5. Table S3. Physical-chemical properties of organic acids

Figure S2 Zeta potential analysis of Fe₃O₄@EB-TFB-iCOF

Table S1 Reproducibility of Fe₃O₄@EB-TFB-iCOF

					1
An An	alvtes	Parallel 1 R (%)	Parallel 2 R (%)	Parallel 3 R (%)	RSD (%)
1 11	arytes	1 uluiter 1, 12 (70)			1000 (70)
N N	ΙΔΔ	80.4%	89.8%	80.3%	5 34
1	1111	00.470	07.070	00.570	5.54
BI	NOA	99.0%	90.2%	98.9%	4 29
	NO II	77.070	90.270	70.770	7.27
M	CPΔ	90.4%	94 4%	94.6%	2 54
111	UA	70.470	74.470	94.070	2.34
21	5-TP	94.0%	88 7%	05 5%	3 1 5
2,4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77.070	00.770	15.570	5.15

a. Three parallel extraction materials

b. Single extraction material with five replicates

Analytes	n=1, R (%)	n=2, R (%)	n=3, R (%)	n=4, R (%)	n=5, R (%)	RSD (%)
NAA	97.6%	93.9%	90.1%	91.7%	90.0%	2.80
BNOA	89.7%	94.8%	98.3%	96.3%	99.5%	3.26
МСРА	97.4%	87.8%	90.4%	85.2%	91.3%	4.13
2,4,5-TP	92.0%	87.6%	87.6%	88.7%	88.3%	1.68

Table S2 Extraction efficiency of different pollutants using $Fe_3O_4@EB$ -TFB-iCOF asMSPE adsorbent (n=3)

Analytes	EE (%)	RSD (%)
Organic acids ^a	72.1-93.3%	0.4-1.3
Sulfonamides ^b	30.6-39.2%	0.8-1.7
Estrogens ^c	34.2-41.2%	1.1-1.9
PAHs ^d	6.4-9.6%	0.7-2.4

^a NAA, BNOA, MCPA, 2,4,5-TP; ^b Sulfadiazine, sulfapyridine, sulfamerazine, sulfamethoxazole, sulfisoxazole; ^c Estriol, β-Estradiol; ^d Naphthalene, Acenaphthene, Phenanthrene, Fluoranthene

Analytes	Structure	Molecular weight	p <i>K</i> _a
NAA	но	186.2	3.73
BNOA	OH O	202.2	4.60
МСРА	он о сі	200.6	3.14
2,4,5-TP		269.5	3.03

Table S3 Physical-chemical properties of organic acids