A fluorimetric and colorimetric dual-signal sensor for hydrogen peroxide and glucose based on the intrinsic peroxidase-like activity cobalt and nitrogen co-doped carbon dots and inner filter effect

Guo-Qi Zhang^a; Yong-sheng Li^{a*}; Wei-Ping Liu^b; Xiu-Feng Gao^{c**}

^a: School of Chemical Engineering, Sichuan University, Chengdu 610065, China

b: Department of Clinical laboratory, Zigong First People's Hospital, Zigong 643000, China

^c: West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China

*Corresponding author: E-mail: li-yongsheng@scu.edu.cn; **xiufengg@163.com

Fig. S1 the size distribution histogram of Co-N-CDs.

Fig. S2 the XPS high-resolution C1s, N1s, O1s and Co 2p curves of Co-N-CDs.

Fig. S3 the visible spectra scan curve of the oxidation of ABTS (A) or TMB (B) by H_2O_2 catalyzed by Co-N-CDs. The concentrations of TMB and ABTS are 100 mM. Other experimental conditions are the same as those described in "Peroxidase-like catalytic activity of Co-N-CDs".

between Co-N-CDs and HRP.							
Catalyst	Substrate	$K_{\rm m}({\rm mM})$	$V_{\max} (\mathrm{mM} \cdot \mathrm{min}^{-1})$				
Co-N-CDs	H_2O_2	2.10	0.48				
HRP	H_2O_2	6.78	0.15				
Co-N-CDs	GA	31.98	0.031				
HRP	GA	40.20	0.025				

Table S1. Comparison of the kinetic parameters (K_m and V_m) between Co-N-CDs and HRP.

Fig. S4 Influences of temperature and pH on the catalytic performance of Co-N-CDs and HRP. The maximum point in each curve was set as 100%. The HRP concentration was 300 $U\cdot L^{-1}$.

Fig. S5 Schematic of Co-N-CDs catalyzing H_2O_2 oxidation of GA to generate an amber product 2-PQ.

Fig. S6 The zeta potential of the Co-N-CDs.

Fig. S7 (A) Verification that Co-N-CDs promote the decomposition of H_2O_2 to generate hydroxyl radicals; (B) Effect of different hydroxyl radical scavengers on the absorption spectra of the Co-N-CDs/H₂O₂/GA reaction system.

Fig. S8 Effects of (a) amount of Co-N-CDs, (b) concentration of GA and (c) reaction time for colorimetric method. The effects of (D) excitation wavelengths, (E) amount of Co-N-CDs and (F) concentration of GA for fluorescence method.

determination of glucose by the different nanozymes.							
nanozyme s	Method	Linear range (µM)	LOD (µM)	Refs.			
CDs	colorimetry	1-500	0.4	6			
ZnFe ₂ O ₄ - CNTs	colorimetry	0.8-250	0.58	8			
B-CDs	fluorometry	8-80	8	9			
V_2O_5	colorimetry	200-5000	80	14			
Ni-Pd	colorimetry	5-500	4.2	16			
Au-Ni-	colorimetry	0.5-30	1.7	18			
C_3N_4							
Ag_2WO_4	colorimetry	27.7-330	2.6	20			
N-CDs	colorimetry	25-375	16	40			
CuO-CDs	colorimetry	2-100	0.59	42			
Fe-CDs	fluorometry	0-300	2.5	52			
Cu-CDs	colorimetry	100-2000	100	53			
	colorimetry	2-100	1.16	this			
CO-IN-CDS	fluorometry	0.4-40	0.18	work			

Table S2. Comparison of the analytical performance for the