Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2021

Supporting information

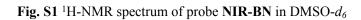
Contents:

- 1. Materials and instruments
- 2. Bioimaging
- 3. Supplementary figures
- Fig. S1 ¹H NMR spectra of NIR-BN in DMSO- d_6
- Fig. S2 ¹³C NMR spectra of NIR-BN in DMSO- d_6
- Fig. S3 HRMS spectra of NIR-BN
- Fig. S4 The specificity experiments of NIR-BN-SO₃²⁻ for the reversible reaction of HCHO
- Fig. S5 The interference experiments of NIR-BN for SO₃²⁻
- Fig. S6 The pH response of NIR-BN for SO₃²⁻
- Fig. S7 The reaction time of NIR-BN (20 μ M) for SO₃²⁻ (100 μ M)
- Fig. S8 HRMS spectra of NIR-BN -SO₃²⁻

1. Materials and instruments

All chemicals from Aladdin were used without further purification. In this experiment, the absorption and fluorescence spectra were measured using a UV-2450 ultraviolet spectrophotometer (Shimadzu, Japan) and F-7000 fluorescence spectrophotometer (Hitachi, Japan), respectively. ¹H NMR and ¹³C NMR spectra were obtained by a Bruker AVANCE-600 MHz and 150 MHz NMR spectrometer, respectively (Bruker, Billerica, MA). A Thermo Scientific Q Exactive LC-MS/MS system was used for HRMS spectra. Cell imaging and zebrafish imaging experiments relied on a ZEISS LSM 880 confocal laser scanning microscope.

2.1 HeLa cell culture and imaging


HeLa cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% FBS and 0.25% trypsin at 37 °C and 5% CO₂. The cells were incubated on plates and allowed to grow for 24 h. Before the experiment, HeLa cells were washed three times with PBS (pH=7.4). First, the cells were incubated with **NIR-BN** (10 μ M) for 15 min to observe the phenomenon, and then SO₃²⁻ (50 μ M) was added and incubated for another 15 min. Secondly, the cells were incubated with GSH (500 μ M) and Na₂S₂O₃ (250 μ M) for 1h, and then incubated with **NIR-BN** (10 μ M) for 15 min. The fluorescence images of HeLa cells were obtained at the emission ranges of 650-710 nm ($\lambda_{ex} = 561$ nm).

2.2 Zebrafish culture and imaging

The zebrafish used in the experiment were purchased from Shanghai Feixi Biological Technology Co., Ltd. One group of zebrafish was cultured with 20 μ M **NIR-BN** for 30 min. The other group was treated with 20 μ M **NIR-BN** for 30 min, and then co-incubated with 100 μ M SO₃²⁻ for further 30 min. The fluorescence images of zebrafish were obtained at the emission ranges of

650-710 nm ($\lambda_{ex} = 561$ nm).

2. Supplementary figures

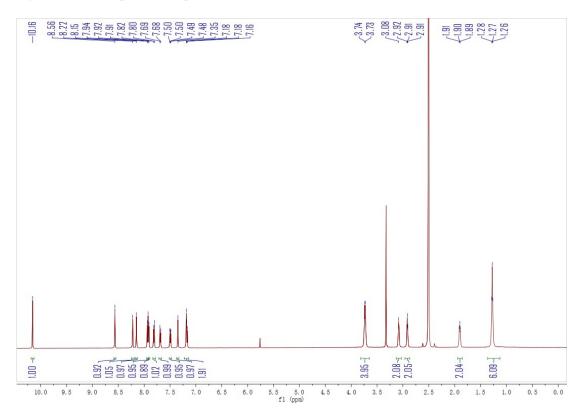


Fig. S2 ¹³C-NMR spectrum of probe NIR-BN in DMSO-*d*₆

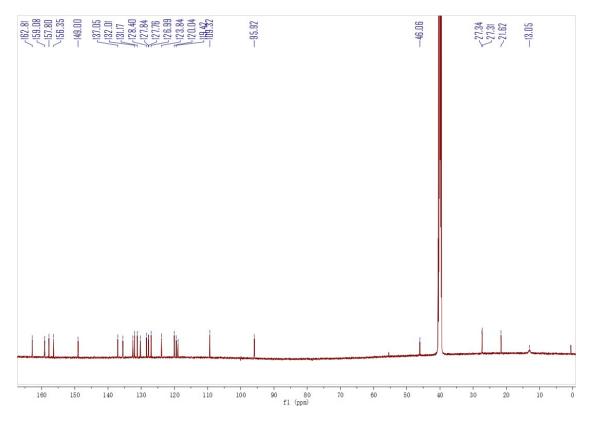


Fig. S3 HRMS spectrum of NIR-BN

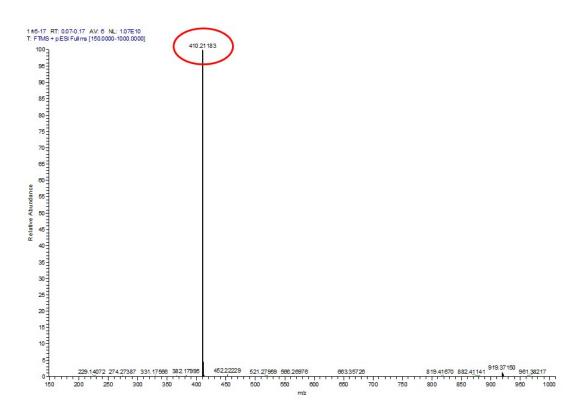
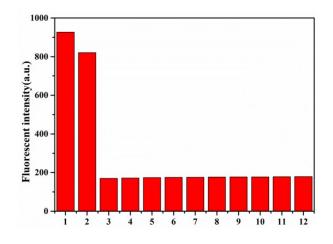



Fig. S4 The specificity of NIR-BN-SO₃²⁻ for the reversible reaction of HCHO (60 μ M) in CH₃CN/PBS (v/v, 2/8, pH= 7.4). (1) Probe NIR-BN, (2) HCHO, (3) Fe²⁺, (4) Cu²⁺, (5) H₂O₂, (6)

ClO⁻, (7) Al³⁺, (8) MnO₄⁻, (9) CH₃COO⁻, (10) NO₃²⁻, (11) NO₂⁻, (12) K⁺.

Fig. S5 (a) The selectivity of **NIR-BN** for SO₃²⁻. (b)Fluorescence intensity of **NIR-BN** (20 μM) toward 100 μM SO₃²⁻ in the presence of 100 μM interfering species each in CH₃CN/PBS (v/v, 2/8, pH= 7.4). (1)probe **NIR-BN**, (2)SO₄²⁻, (3)S₂O₃²⁻, (4) HS⁻, (5)Cys, (6)Hcy, (7)GSH, (8)Cl⁻, (9)Br⁻, (10)CO₃²⁻, (11)NO₂⁻, (12)CH₃COO⁻, (13)NO₃²⁻, (14)H₂O₂, (15)ClO⁻, (16)SO₃²⁻.

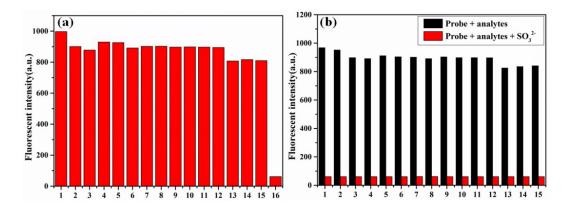


Fig. S6 Fluorescence intensity of the NIR-BN (20 μ M) at different pH values in the absence or presence of SO₃²⁻ (20 μ M) in CH₃CN/PBS (v/v, 2/8, pH= 7.4).

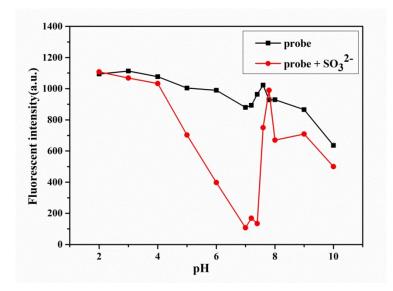


Fig. S7 The reaction time of NIR-BN (20 $\mu M)$ for $SO_3{}^{2\text{-}}$ (20 $\mu M)$

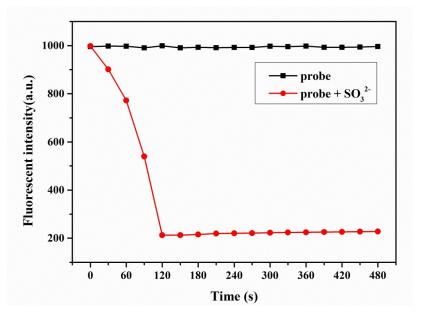


Fig. S8 HRMS spectra of NIR-BN-SO₃²⁻

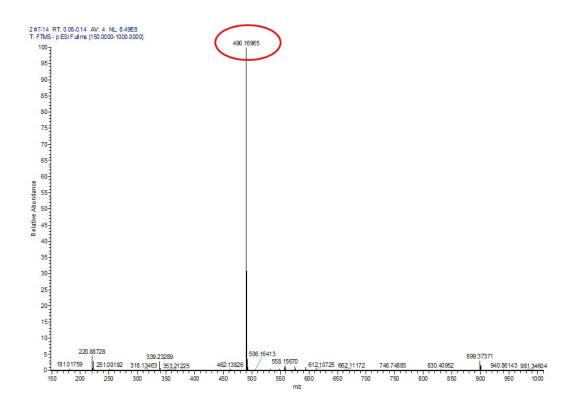


Table S1. Comparison of NIR-BN and other probes for SO_3^{2-} detection

Refs.	Targeting mitochondria	$\lambda_{\rm ex}/\lambda_{\rm em}~({\rm nm})$	Food application	Living cell imaging	Detection limit	Time
	inteenonunu		uppiroution	innagning		
1	Yes	380/470,578	No	endogenous,	40 nM	2 min
				exogenous		
2	No	360/430,520	Yes	exogenous	79.2 nM	60 s

3	No	405/485,565	No	endogenous, exogenous	20 μΜ	1 min
4	No	404/467,587	No	endogenous, exogenous	0.21µM	2 min
5	Yes	405,561/534,634	No	exogenous	0.047µM	8 min
6	Yes	420/494,579	No	exogenous	299 nM	5 min
This work	Yes	580/680	Yes	endogenous, exogenous	0.17 μΜ	2 min

Notes and references

- 1. D.S. Zhang, A.K. Liu, R.X. Ji, J. Dong, Y.Q. Ge, Anal Chim Acta., 2019, 1055, 133-139.
- 2. Q. Jiang, Z.L. Wang, M.X. Li, J. Song, Y.Q. Yang, X. Xu, H.J. Xu, S.F. Wang, Dyes Pigm., 2019,

171, 107702.

- 3. Q.L. Zhang, Z.Q. Cui, Q.F. Wang, G.X. Zheng, Sens. Actuators B Chem., 2019, 295, 79-85.
- 4. J. Nie, H. Sun, Y. Zhao, X. Dai, Z.H. Ni, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2021,

247, 119128.

 Y.R. Lu, B.L. Dong, W.H. Song, Y.R. Sun, A.H. Mehmood, W.Y. Lin, *New J. Chem.*, 2020, 44, 11988-11992.

6. J.W. Shi, W. Shu, Y. Tian, Y.L. Wu, J. Jing, R.B. Zhang, X.L. Zhang, RSC Adv., 2019, 9, 22348-

22354.