Supporting Information

Entry	Solvent	LOD (v/v %)	Sensing strategy	Ref.	
1	THF DMF ethanol acetonitrile acetone	0.059 0.210 0.081 0.092 0.400	ICT	12	
2	DMF MeOH acetonitrile DMSO	0.011 0.007 0.007 0.008	Chemical reaction	13	
3	THF DMF 1,4-dioxane acetone acetonitrile DMSO	0.13 0.088 0.025 0.019 0.024 0.095	ICT	14	
4	THF DMF acetone acetonitrile	$egin{array}{c} 0.058^a \ 0.026^a \ 0.076^a \ 0.063^a \end{array}$	FRET	15	
5	THF acetonitrile	0.28 0.20	Chemical reaction	16	
6	THF 1,4-dioxane acetonitrile ethanol	$\begin{array}{c} 0.1^{a} \ 0.1^{a} \ 0.001^{a} \ 0.001^{a} \ 0.001^{a} \end{array}$	PET	17	
7	THF DMF 1,4-dioxane acetone acetonitrile methanol	0.020 0.054 0.049 0.016 0.021 0.291	ICT	18	
8	THF acetonitrile methanol	0.0464 0.0298 0.0017	Chemical reaction	19	
9	THF acetonitrile acetone DMSO methanol	0.98 0.038 0.74 1.1 1.3	Hvdrogen-bond interactions	20	
10	DMF ethanol acetonitrile NMP	0.008^{a} 0.1^{a} 0.02^{a} 0.009^{a}	Water induced interpolymer π -stacking aggregation	21	
11	THF DMF DMAc	0.034 0.013 0.014	Water induced interpolymer π -stacking aggregation	This work	

Table S1 Comparison of previously reported fluorescence water probe with our probe

 PTS

^{*a*} Results expressed using weight/weight percent (wt%).

Fig. S1 ¹H NMR spectrum of polymer probe **PTS**. The ethanethioated graft yield was determined by the integral ratio of the proton signal at 3.05 ppm (a) to that at 3.49 ppm (b).

Fig. S2 Contact angles for (a) PTS and (b) PTBr.

Fig. S3 (a) UV-Vis absorption spectra of PTS in different organic solvents, $[PTS] = 100 \mu M$. (b) Photographs of PTS in various organic solvents.

Fig. S4 Changes in the average hydrodynamic diameter of PTS aggregates as water content in various solvents: (a) THF, (b) DMF and (c) DMAc obtained by DLS analysis.

Table S2 Calculation equations, detection range and limit of detection (LOD) of theprobe PTS for determination of water content in organic solvents

Solventa	Coloulation aquational	Correlation	Detection	Limit of
Solvents	Calculation equations"	coefficient (R^2)	range (v/v)	detection (LOD)
THF	$F/F_0 = 1.0027 - 0.0339C$	0.9985	0-30 %	0.034 %
DMF	$F/F_0 = 1.01094 - 0.08556C$	0.9985	0-10 %	0.013 %
DMAc	$F/F_0 = 1.01544 - 0.08182C$	0.9970	0-10 %	0.014 %

Fig. S5 Photostability of PTS (100 μ M) in dry THF, DMF, DMAc and their corresponding aqueous solutions. Error bars represent the standard deviations of three independent experiments.

Fig. S6 Photoluminence spectra of **PTS** in (a) dry DMF, and (b-e) aqueous DMF. The water contents given of b-e are 0.3% (v/v), 0.4% (v/v), 1.3% (v/v) and 5.3% (v/v), respectively. [**PTS**] = 100 μ M, excitation at 420 nm.

Fig. S7 Photoluminence spectra of **PTS** in (a) dry DMAc, and (b-e) aqueous DMAc. The water contents given of b-e are 0.2% (v/v), 0.3% (v/v), 1.2% (v/v) and 5.2% (v/v), respectively. [**PTS**] = 100 μ M, excitation at 420 nm.