Supporting information

for

Highly Stable Surface-enhanced Raman Spectroscopy Assay on Abnormal Thrombin Levels in Blood Plasma of Cancer Patients

Lingling Liao,^{a,b,†} Shanshan Du,^{b,c,†} Yan Ding,^{a,c} Mengke Su,^c Ting Yu,^c Tingmei Duan,^a Qinghe Li,^a Shengnan He,^{b,*} Hongyan Wang,^{a,*} and Honglin Liu^c

^a First Affiliated Hospital of Anhui Medical University, Hefei 230000, China

^b Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China.

° School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China

*Correspondence: whhy5000@163.com ; heshengnan@ahu.edu.cn

Figure S1. (a) UV-Vis spectra of GNP; (b) The particle sizes of GNPs measured by DLS.

Figure S2. (a and b) UV-Vis spectra of as-prepared GNP, GNP@4MBA, EP, GNP@DTNB, and CP, respectively; (c and d) SERS spectra of the as-prepared GNP@4MBA, GNP@DTNB; (e and f) UV-Vis spectra of the pure GNP sols and the as-prepared EP, respectively, in the absence (1, red line) or presence (2, black line) of 2 M NaCl. The inserts are the photo of corresponding solutions; (g) SERS spectra of the as-prepared MB, GNP@DTNB, and MB@GNP@DTNB; (h)SEM image of CP.

Figure S3. The Raman intensity of CP changes within 7 days, and the error bar represents the error of three measurements.

Figure S4. SEM image of EP/TB/CP.

Figure S5. The calibration curve for the SERS intensity at 1326 cm⁻¹ as a linear function of the

concentration of TB ($R^2=0.97151$). Error bars indicate standard deviations from three measurements.

Figure. S6 Raman spectra of different proteins.

Table S1.	Functional	groups and	vibration	modes o	of reporter	molecules	4MBA	and DTNB.	1, 2
I able 51.	i unetional	Sloups and	vioration	modeb 0	rieponeer	morecures	11011011		

Raman Shift 4MBA (cm ⁻¹)	Assignment	Raman Shift DTNB (cm ⁻¹)	Assignment
1071	v(CC)ring	1048	CH ₃ rocking
1132	δ(CH)	1139	ν (CN) and δ (CN)
1173	δ(CH)	1326	vs(NO ₂)
1357	vs(COO-)	1549	v (aromatic ring)
1575	$\nu(CC)_{ring}$		

1071cm ⁻¹	р	1326 cm ⁻¹	р
Cancer1- Control	P<0.001	Cancer1- Normal	P<0.001
Cancer2-Control	P<0.001	Cancer2-Control	P<0.001
Cancer3-Control	P<0.001	Cancer3-Control	P<0.001
Cancer1-Normal	0.013	Cancer1-Normal	0.002
Cancer2- Normal	0.003	Cancer2- Normal	0.025
Cancer3- Normal	0.002	Cancer3- Normal	P<0.001
Normal- Control	P<0.001	Normal- Control	0.009

Table S2. Statistical analysis of intensity at 1071 cm⁻¹ and 1326 cm⁻¹ in cancer patients, normal and control.

Reference

- 1. C. J. Orendorff, A. Gole, T. K. Sau and C. J. Murphy, *Analytical Chemistry*, 2005, **77**, 3261-3266.
- 2. C. C. Lin and C. W. Chang, *Biosensors & Bioelectronics*, 2014, **51**, 297-303.