Electronic Supplementary Data

A Ratiometric Triazine-based Colorimetric and Fluorometric Sensor for the Recognition of Zn²⁺ Ions and its application in human lung cancer cells

^aMoumi Mandal, ^aDibyendu Sain, ^bMd. Majharul Islam, ^aDipanjan Banik, ^cMuthaimanoj Periyasamy, ^bSukhendu Mandal, ^aAjit Kumar Mahapatra* and ^aArik Kar*

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India

^bDepartment of Microbiology University of Calcutta 35, B. C. Road, Ballygunge Kolkata-700019

^c Department of Mining Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India

*correspondence Address: Email: <u>akmahapatra@chem.iiests.ac.in</u> Email: akar@chem.iiests.ac.in

Table of contents

1. Comparison of recently reported Zn^{2+} sensor with our present work (Table S1)	S2
2. Experimental section	
2.1. General information and chemicals	S4
2.2. Preparation of the receptor	
2.2.1. Synthesis of compound R1	S4
2.2.2. Synthesis of compound R2	S5
2.2.3. Synthesis of Zn^{2+} - R1 complex	S6
2.2.4. Synthesis of Zn ²⁺ - R2 complex	S6
3. General method of UV-Vis and fluorescence titrations	S7-S8
4. Quantum chemical DFT method	S9
5. Job's plot of the receptors (R1 and R2) for Zn^{2+}	S11

6. Determination of binding isotherm of metal co-ordinate complexes	S11
7. Determination of binding constant value (K _a) using linear method of the receptor R2 for the Zn^{2+}	ors R1 and S12
8. Determination of fluorescence quantum yields	S13
9. Determination of the Response time of probe towards the product	S13
10. NMR spectra: ¹ H NMR, ¹³ C NMR	S14-S16
11. ESI-MS Spectra	S17-S18
12. Calculation of Limit of Detection (LOD)	S18
13. Live Cell Imaging	S19
14. Real sample study	S20

Sl.	Probe structure	LOD	Solvent	Mode of	Application	Ref.
No				sensing		
1		3.1× 10 ⁻⁷ M	ACN:DMF	Inhibition of ESIPT and C=N isomerizati on	Logic gate	1
2	HOOC	21× 10 ⁻⁶ M	aqueous buffer Tris- HCl, (pH 7.5)	Inhibition of C=N isomerizati on and ICT	-	2

 Table S1 Comparison between the previously reported zinc sensors with the current work.

3		10 × 10 ⁻⁶ M	ACN	-	-	3
4		1.01× 10 ^{−6} M	THF: H ₂ O	Inhibition of C=N isomerizati on and ICT	Cell imaging	4
5	OH N-NH	0.17× 10 ^{−6} M	aqueous buffer Tris- HCl, (Ph 7)	CHEF process	-	5
6		3.18× 10 ^{−7} M	EtOH: H ₂ O	Inhibition of ESIPT and PET process	-	6
7	N N H	1.7×10 ⁻⁷ M	Ethanol	Inhibition of C=N isomerizati on and PET	-	7
8	HO HO	5.03×10 ⁻⁷ M	EtOH/HEP ES buffer	inhibition of PET and C=N isomerizati on	cell imaging	8

0		$1.47 \times 10^{-7} M$	ACNULO	Inhibition	0.011	0
9		1.4/×10 / WI	$ACN.\Pi_2O$			9
				of ESIPT	imaging	
				and C=N		
				isomerizati		
				on		
				011		
10	s	6.5×10 ⁻⁵ M	MeOH/H ₂ O	-	-	10
			(7/3, V/V,			
	\square		pH 7.3)			
11	ОН	$10 \times 10^{-6} \mathrm{M}$	aqueous	Inhibition	Logic gate	11
	N		buffer:CH2	of PET		
	ОН			and CHEF		
12		1.22× 10 ⁻⁷ M	Ethanol-	Inhibit	Cell	Pres
			water (1:1)	ESIPT	imaging	ent-
						wor
	HN					k
	Сон					
10		1.10.10.716	D (1 1	x 1 1 1		D
13	но	$1.13 \times 10^{-7} \text{ M}$	Ethanol	Inhibit	-	Pres
				ESIPT		ent-
	OH N NH					wor
	HN _N					k
	(он					
	1	1	1	1	1	1

2. Experimental section

2.1. General information and chemicals

All the chemicals employed for synthesis were acquired from Sigma-Aldrich and utilized without further purification. Solvents used for the experimental rationale were all of analytical

grade. Perchlorate salts of relevant cations were exploited for the preparation of the stock solutions. ¹H NMR spectra was recorded on a Brucker 500 MHz tool. For NMR spectra, CDCl₃ was exploited as solvent using TMS as an internal standard. Chemical shifts are expressed in d units and ¹ H–¹ H and ¹ H–C coupling constants are in Hz. The following abbreviations were used to define NMR peak patterns: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, ddd = doublet of doublets, td = triplet of doublets, br = broad, m= multiplet. The coupling constants are given in Hertz (Hz) and, wherever possible, assignment of protons is made. The carbons in the molecular skeletons were not necessarily numbered following the IUPAC nomenclature rules; numeration was entirely done for assigning NMR signals. UV-Vis titration experiments were executed on a JASCO UV-V530 spectrophotometer and fluorescence experiments were done using a PerkinElmer LS 55 fluorescence spectrophotometer using a fluorescence cell of 10 mm path length.

2.2. Preparation of the receptor

Synthesis of compound 1: Synthesis of 2,4,6-trihydazino-1,3,5-triazine (THDT)

The receptor THDT was produced via a simplistic and rapid single-step reaction (Scheme 1). 0.5 g (27.1 mmol) of cyanuric chloride was added to a 40.0 g (81.3 mmol) of hydrazine hydrate and the resulting mixture was stirred vigorously for 3 hrs at 115 °C. After 3 hrs, THDT was collected by means of filtration. To eliminate any unreacted hydrazine hydrate, the residue was washed several times with water to achieve pH = 7. A white powder was attained after vacuum drying at 40 °C.

2.2.1. Synthesis of compound R1

THDT (250 mg, 1.460 mmol) in dry DMF (20.0 ml) was taken in a round bottomed flask. Salicylaldehyde (4.38 mmol, 0.46 ml) is added dropwise into this solution for 15 minutes followed by 1 drops of acetic acid. Subsequently the whole reaction mixture was refluxed for 6 h. By verifying TLC, the completion of the reaction is monitored. After completion of the

reaction, excess amount of water is added to get the precipitate. The crude residue was collected by filtration and then purified by column chromatography using 40% EtOAc in ether to obtain pure **R1** (solid, grey colour, 76% yield).

¹**H** NMR (400 MHz, DMSO- d_6): $\delta = 6.86-6.89$ (m, 6H, [b,c]-H), 7.21-7.23 (m, 3H, d-H), 7.40-7.66 (m, 3H, a-H), 8.38 (s, 3H, e-H), 11.0-11.5 (brs, 6H, [OH, NH]-H), ppm.

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 116.8$, 119.6, 120.3, 129.5, 130.9, 157.5, 162.8, 170.1 ppm.

HRMS: *m/z* (%) = 484.1935 (100) [R1+H]⁺

2.2.2. Synthesis of compound (R2)

THDT (250 mg, 1.46 mmol) in dry DMF (20.0 ml) was taken in a round bottomed flask. 2hydroxy naphthaldehyde (4.38 mmol, 0.46 ml) was inserted into the THDT solution followed by the addition of 1 drop of acetic acid. The entire reaction mixture was refluxed for 6 hrs. By monitoring TLC, the completion of the reaction was scrutinized. After the reaction was finished excess amount of water is added in the reaction mixture to obtain precipitate. The crude residue was collected by filtration and extracted the organic fraction from the inorganic fraction by using chloroform with the help of a separating funnel. Finally the product was purified by column chromatography by using 40% EtOAc in ether to acquire pure (**R2**) (solid, yellow color, 79% yield).

¹**H** NMR (400 MHz, DMSO-*d*₆): $\delta = 7.24$ (d, 3J = 8.8 Hz, 3H, b-H), 7.40 (t, 3J = 8.0 Hz, 3H, d-H), 7.61 (t, 3J = 8.0 Hz, 3H, e-H), 7.85-7.93 (m, 4H, [c,f]-H), 8.12 (brs, 3H, a-H), 9.37 (brs, 3H, g-H), 11.43 (brs, 3H, OH-H), 12.9 (brs, 3H, NH-H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 109.7, 119.8, 121.2, 124.2, 128.4, 128.6, 129.8, 132.3, 132.6, 143.7, 158.2, 164.6 ppm.

ESI-MS: *m/z* (%): 634.3 (100) [R2+H]⁺

2.2.3. Synthesis of Zn-R1 complex

 Zn^{2+} complex of sensor is synthesized by adding the sensor (100 mg, 0.206 mmol) into a ethanolic solution of $Zn(ClO_4)_2$ (231.06 mg, 0.620 mmol) and the entire mixture is refluxed for 1 h. The solvent is eradicated under vacuum and the entire mass is washed with diethyl ether several times. Ultimately a deep brown colour solid is obtained (70 mg, 64%) which is characterized by mass spectroscopy (ESI-MASS) and ¹HNMR.

2.2.4. Synthesis of Zn- R2 complex

 Zn^{2+} complex of R2 was produced by adding the probe R2 (100 mg, 0.206 mmol) into an ethanolic solution of $Zn(ClO_4)_2$ (231.06 mg, 0.620 mmol) and the resulting mixture was refluxed for 1 hr. The solvent was eliminated under vacuum and the entire mass is washed with diethyl ether several times. Finally a deep yellow colour solid was accomplished (70 mg, 64% yield) which was consequently characterized by mass spectroscopy (ESI-MASS) and ¹HNMR spectroscopy.

3. General method of UV-Vis and fluorescence titrations

3.1. UV-Vis method: For UV-vis titrations, a stock solution of receptor R1 (1.07×10^{-5} M) and R2 (1.26×10^{-5} M) were arranged by dissolving 0.13 mg in 25 mL of mixed solvent EtOH-tris buffer (1/1, v/v) and 0.158 mg in 25.0 mL anhydrous ethanol solution respectively.

The solutions of the guest cations using their perchlorate salts were prepared in the order of $(1.79 \times 10^{-4} \text{ M})$ in HEPES buffer at pH = 7.2 in 10 ml of the identical solution for the receptor R1 and the order of $(1.20 \times 10^{-4} \text{ M})$ in 25 ml ethanol medium is prepared for the receptor R2. Analogous concentrations were taken for other metal ions to ascertain the potential interference. The spectra of these solutions were recorded by means of a UV-Vis method.

Figure S1: Absorption spectra of R2 $(1.26 \times 10^{-5} \text{ M})$ upon steady addition of Zn²⁺ (0 to 0.55 mL), Inset: Photograph illustrating the visible color change of R2 before and after the addition of Zn²⁺.

3.2. Fluorescence method: For fluorescence titrations, the concentrations of the stock solutions of receptors and metal ions reserved the same as exploited for UV-Vis titration. Here as well the solutions of the guest cations using their perchlorate salts were prepared in the order of $(1 \times 10^{-4} \text{ M})$ in 10 ml. Equivalent concentrations were taken for other metal ions to establish the potential interference. The spectra of these solutions were recorded by means of a fluorescence technique.

Figure S2: Emission spectra of **R2** (10 mM) upon steady addition of Zn^{2+} (0 to 0.55ml), Inset: photograph demonstrating the visible emission color change of R2 before and after Zn^{2+} (0.55ml) addition.

Bar diagram:

Figure S3: R2 (1.26 ×10⁻⁵ µM) upon addition of diverse species (1 × 10⁻⁴ µM); Red bars: Probe + other species; Black bars: Probe + other species + Zn^{2+.} Legend: 1) Fe(ClO₄)₂, 2) Cu(ClO₄)₂, 3) AgClO₄, 4) Al(ClO₄)₃, 5)Cd(ClO₄)₂ 6) Ca(ClO₄)₂, 7) Cr(ClO₄)₃ 8) Mn(ClO₄)₂ 9) Mg(ClO₄)₂ and 10) Ni(ClO₄)₂ (λ_{ex} = 375 nm; λ_{em} = 468 nm).

Mechanism of Zn²⁺ sensing of the probe R2:

Scheme S3: a) Probable ESIPT approach of the probe R2 from keto-enol tautomerism. b) Plausible binding mode of the R2 with Zn^{2+} .(ESIPT off – CHEF on)

4. Quantum chemical DFT method

For determination of the binding mode of the receptors R1 and R2 with Zn^{2+} , we executed quantum chemical DFT calculation using the Gaussian 09 program with the assist of the Gauss View visualization program. Both the receptors R1 and R2 were optimized using the B3LYP/6-311G+(d, p) basis set and for the complex B3LYP/LanL2MB basis set was utilized. Subsequently we performed the excitonic calculations by means of time-dependent density functional methods (TD-DFT).

Table S2 The vertical main orbital transition of the receptor R1 calculated by TDDFT method.

Energy (eV)	Wave length (nm)	Osc. strength (f)	Transition
3.4398	360.45	0.0101	HOMO→LUMO
3.6455	340.10	0.2211	HOMO→LUMO+1
3.6751	337.36	3.6751	HOMO-1→LUMO

 Table S3 The vertical main orbital transition of the receptor R2 calculated by TDDFT method.

Energy (eV)	Wave length (nm)	Osc. strength (f)	Transition
3.3203	373.41	0.7119	HOMO→LUMO

3.3514	369.95	0.9014	HOMO→LUMO+1
3.4822	356.06	0.0479	HOMO-1→LUMO

FigureS4: Absorption spectra of the probe R2.

5. Job's plot of the receptors (R1 and R2) for Zn²⁺

Job's plots were drawn by plotting $\Delta F.X_{host}$ vs X_{host} (ΔF = change of intensity of the emission spectrum at 339 nm for R1 and 379 nm for R2 during titration and X_{host} is the mole fraction of the host in each case respectively).

Figure S5 a) Job's plot of R1 with Zn^{2+} using UV-Vis data and b) Job's plot of R1 with Zn^{2+} using fluorescence data.

Figure S6 a) Job's plot of R2 with Zn²⁺using UV-Vis data and b) Job's plot of R2 with Zn²⁺using fluorescence data.

6. Determination of binding isotherm of metal co-ordinate complexes

Binding isotherms were drawn by plotting $\Delta I vs$ [G]/[H] [(ΔI = change of intensity of the emission spectrum at 339 nm for R1 and 379 nm for R2 throughout titration and [G] is the concentration of the metal ion and [H] is concentration of the receptors in each case respectively).

Figure S7 a) Binding isotherm of R1 with Zn²⁺ using UV-Vis data b) Binding isotherm of R1 with Zn²⁺ using FL data.

Figure S8a) Binding isotherm of R2 with Zn²⁺ using UV-Vis data b) Binding isotherm of R2 with Zn²⁺ using FL data.

7. Determination of binding constant value (K_a) using linear method of the receptors R1 and R2 for the recognition of Zn^{2+} .

Binding constant value (K_a) were calculated by plotting $1/\Delta I vs 1/[G]$ [(ΔI = change of intensity of the emission spectrum at 339 nm for **R1** and 379 nm for **R2** during titration and [G] is the concentration of the metal ion in each case respectively).

Figure S9 a) Binding constant value of R2 with Zn²⁺ using FL data b) Binding constant value of R1 with Zn²⁺ using FL data.

8. Determination of fluorescence quantum yields

The fluorescence quantum yield is calculated by the following equation:

$$\varphi_{\rm S} = \varphi_{\rm A} \times F_{\rm A}/F_{\rm S} \times A_{\rm A}/A_{\rm S} \times \eta_{\rm A}^2/\eta_{\rm S}^2$$

Where F_A and F_S are the integrated fluorescence intensity of the receptors (R1 and R2) and Perylene (reference) respectively. A_A and A_S are the absorbance of the receptors (R1 and R2) and Perylene (reference) respectively at same excitation wavelength. η_A and η_S are the refractive indices of respective solvents employed as Acetonitrile and Ethanol.

The values obtained for quantum yield are 18% for R1 and 12% for R2.

9. Determination of the Response time of probe towards the product

Figure S10 a) Time periods (0–130 Sec) of fluorescence enhancement of probe **R2** (1.26×10^{-5} M) in EtOH solution b) Time periods (0–550 Sec) of fluorescence enhancement of probe **R1** (1.07×10^{-5} M) in EtOH-trisbuffer (1/1, v/v) solution. ($\lambda ex = 459$ nm; for R1 and $\lambda ex = 468$ nm for R2).

10. NMR spectra: ¹H NMR, ¹³C NMR

Figure S11: ¹H NMR spectrum of R1 in DMSO- d_6 (400 MHz, 298 K).

Figure S12: ¹³C NMR spectrum of R1 in DMSO-*d*₆ (100 MHz, 298 K).

Figure S13: ¹H NMR spectrum of **R2** in DMSO-*d*₆ (400 MHz, 298 K).

Figure S14: ¹³C NMR spectrum of **R2** in DMSO-*d*₆ (100 MHz, 298 K).

Figure S15: ¹H NMR spectrum of Zn₃R2 in CD₃CN (400 MHz, 298 K).

Figure S16: ¹H NMR spectrum of Zn₃R1 in CD₃CN (400 MHz, 298 K).

11. ESI-MS Spectra

Figure S17: ESI-MS of R2 after protonation.

Figure S18: ESI-MS of Zn₃R2.

FigureS19: HRMS of R1 after protonation.

Figure S20: ESI-MS of Zn₃R1.

12. Calculation of Limit of Detection (LOD)

The limit of detection value was obtained from a plot of fluorescence intensity vs. function of Zn^{2+} concentration. The S/N ration was determined by the 10 times measurable emission intensity of the receptors (R1 and R2) without addition of Zn^{2+} and then standard deviation of blank measurements was calculated. The LOD value of probe for Zn^{2+} was determined by the following equation:

 $LOD = K \times \delta/m$

Where K= 2 or 3 (We take 3 in this case)

 δ is the standard deviation of the blank solution and m is the slope the calibration curve.

Figure S21 Calibration curve of R2 at 468 nm depending on Zn²⁺ concentration

13. Live cell imaging

Figure S22: MTT assay to determine the cytotoxic effect of R1-Zn²⁺ complex on A549 cells (Human cancer cell A549, ATCC No CCL–185).

13.1 Cell culture: A549 cell (Human cell A549, ATCC No. CCL–185) lines were prepared from continuous culture in Dulbecco's Modified Eagle's Medium (DMEM, Sigma Chemical Co., St. Louis, MO) supplemented with 10% fetal bovine serum (Invitrogen), penicillin (100 μ g/mL), and streptomycin (100 μ g/mL). Cells were originally propagated in 75 cm² polystyrene, filter–capped tissue culture flask in an atmosphere of 5% CO₂ and 95% air at

 37° C in CO₂ incubator. When the cells reached the logarithmic phase, the cell density was adjusted to 1.0×105 per/well in culture media. The cells were then used to inoculate in a glass bottom dish, with 1.0 mL (1.0×104 cells) of cell suspension in each dish. After cell adhesion, culture medium was removed. The cell layer was rinsed twice with phosphate buffered saline (PBS) (pH 7.0), and then treated according to the experimental necessitate.

Samples	Spiked(µM)	Found(μM)	Actual concentration of Zn ²⁺ in sample water (ppb)
Tap Water	20	22.2	143
River Water	20	24.6	300

Table S5: Real sample study for R2

Samples	Spiked(µM)	Found(µM)	Actual concentration of Zn ²⁺ in sample water (ppb)
Tap Water	20	22.3	150
River Water	20	24.7	309

References:

- 1. R. Azadbakht and H. Keypour, Spectrochim. Acta A., 2012, 85, 293-297
- 2. L. Li, F. Liub and H.W. Li, Spectrochim. Acta A., 2011,79, 1688–1692
- 3. Kundu, P.S. Hariharan, K. Prabakaran and S.P. Anthony, Spectrochim. Acta A., 2015,151,426–431.

- Z. Liao, Y. Liu, S.F. Han, D. Wang, J.Q. Zheng, X.J. Zheng and L.P. Jin, Sens. Actuators B., 2017, 244, 914–921.
- Y. Liu, Y. Li, Q. Feng, N. Li, K. Li, H. Hou and B. Zhang, Luminescence., 2018,33 (1),29–33
- 6. J.C. Qin, L. Fan, T.R. Li and Z.Y. Yang, Synth. Met., 2015, 199, 179–186
- J. Yan, L. Fan, J.C. Qin, C.R. Li and Z.Y. Yang, Tetrahedron Lett., 2016, 57, 2910– 2914
- J. Zhu, Y. Zhang, Y. Chen, T. Sun, Y. Tang, Y. Huang, Q. Yang, D. Maa, Y. Wang and M. Wang, Tetrahedron Lett., 2017,58, 365
- A.K. Saini, M. Srivastava, V. Sharma, V. Mishraa and S.M. Mobin, Dalton Trans., 2016,45, 3927.
- 10. A. Gogoi, S. Samanta and G. Das, Sens. Actuators B: Chem., 2014, 202, 788-794
- 11. A. Hens, RSC Adv., 2015, **5**, 54352–54363.
- 12. Y. Shiraishi, S. Sumiya, Y. Kohno and T. J.Hirai, Org. Chem., 2008, 73, 8571.
- 13. L. Long, D. Zhang, X. Li, J. Zhang, C. Zhanga and L. Zhou, Anal. Chim. Acta., 2013,775,100.
- 14. M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang and D.Zhu, Org. Lett., 2008,10,1481.
- J. Ratha, K. A. Majumdar, S. K. Mandal, R. Bera, C. Sarkar, B. Saha, C. Mandal, K. D. Saha and R. Bhadra, Mol. Cell. Biochem., 2006, 290, 113.