Electronic Supplementary information

for

A novel liquid crystal sensing platform for highly selective UO₂²⁺ detection based on UO₂²⁺-specific DNAzyme

Congcong Hu¹, Ping Li², Zhaoyang Wu², Fengfei Fan¹, Duo Qian¹, Yuxin Yi¹,

Shengyuan Yang 1*, Fubing Xiao^{1,2*}

1. College of Public Health, Hengyang Medical School, University of South China, Hengyang,

Hunan, 421001, People's Republic of China.

2. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China.

Fig. S1 Fluorescence spectra of 80 nM DNAzyme with different concentrations of UO_2^{2+} : (a) 0

nM; (b) 80 μ M; (c) 800 μ M.

Note	Sequence (5'-3')
Capture probe	ATAGTGAGTCCAATTCCATCTCTTCCCCCAAA-(CH ₂) ₆ - NH ₂
39E	CCATCTCTGCAGTCGGGTAGTTAAACCGACCTTCAGACATAGTGAGT
39DS	AATTGGACTCACTAT rA GGAAGAGATGGAATTGG

Table 1	Nucleic	acid	sequences	used in	the	experiment
I abit I	1 (401010	ueru	sequences	ubeu m	une	experiment

Analytical method	Materials ^a	LOD	Reference
Ratiometric	Dual color CDs	0.73 uM	[1]
fluorescence		0.75 µlvi	
Fluorescence	Ln-BTC-AC-FM MOFs	4.12 µM	[2]
	Triphenylamine-based fluorescent	50 M	[3]
Fluorescence	sensor (USC-001)	50 nM	
Electrochemical		0.05 M	[4]
techniques	AgNDS-ERGO/IIO	0.85 µM	
Electrochemical	FePt/ZnIn ₂ S ₄ core-shell semiconductor		[5]
techniques	nanostructures	/1./ nM	
Colorimetry	UO ₂ ²⁺ peroxidase mimic	0.5 µM	[6]
DNAzyme-based LC		25 14	
biosensor	LCs, DNAzyme	25nW	This work

Table 2 Comparison of this method with the proposed methods in the literature for UO_2^{2+}

^{*a*} CDs, carbon dots; MOFs, metal-organic frameworks; AgNDs, Ag nanodendrites; ERGO, electrochemically reduced graphene oxide; ITO, Indium Tin Oxide

References

- J. J. Qian, N. N. Cao, J. Zhang, J. J. Hou, Q. Chen, C. Zhang, Y. D. Sun, S. J. Liu,
 L. F. He, K. Zhang, H. B. Zhou, *Chinese Chem Lett.*, 2020, **31**(11), 2925-2928
- M. Wang, G. Zeng, X. Zhang, F. Y. Bai, Y. H. Xing, Z. Shi, *J Mol Struct.*, 2021, 1238, 13042
- 3 M. Zheng, Q. Yin, D. Y. Wang, Z. X. Zhao, Q. H. Hu, H. Q. Wang, Microchem J., 2021, 167, 106302.
- 4 W. H. Guo, H. L. Xu, X. H. Cao, J. G. Ma, Y. H. Liu, *Microchem J.*, 2020, 158, 105134.
- 5 H. Zeynali, M. Motaghedifard, B. F. O. Costa, H. Akbari, Z. Moghadam, M. Babaeianfar, M. J. Rashidi, *Arab J Chem.*, 2020, **13**(1), 1429-1439
- Z. X. Jiang, H. Li, R. Ai, Y. Q. Deng, Y. He, Acs Sustain Chem Eng., 2020, 8(31), 11630-11637.