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Scheme S1. Schematic showing the (a) Cornell and (b) Utah-Washington mechanisms for N-Ca bond
cleavage in ExD of peptides and proteins.
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Figure S1. Schematic of the TIMS-q-EMS-ToF MS instrument. Insets illustrates the design of the convex
electrode TIMS geometry as well as the EMS lenses (Li1-L7), magnet (LM3 an LMs5) and filament (FB)
arrangement.

S4



Table Si. Optimized electrostatic potentials, filament current and collision energy settings in the
transmission and ECD modes for the EMS cell.

Parameters Settings in Settings in ECD
Transmission Mode = Mode
L1 34.5V 275V
L2 -43.8V 36.6 V
LM3 332V 445V
L4 320V 463V
FB 311V 335V
LMs 300V 361V
L6 291V 35.9V
L7 283V 29.0V
FB current o A (off) 25A
Collision Energy 10 eV 2eV
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Figure Sz2. ECD/CID spectra of the ion mobility-selected [M + 2H]** ions of substance P acquired in (a,b)
TIMS-q-ECD-ToF MS/MS, (c) FT-ICR-ECD MS/MS and (d,e) TIMS-q-CID-ToF MS/MS platforms. (f) Bar
plots showing the relative intensities of the CID product ions per IMS bands for the selected [M + 2H]**
ions.
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Figure S3. ECD/CID spectra of the ion mobility-selected [M + 2H]** ions of AT-Hook 3 acquired in (a-c)
TIMS-q-ECD-ToF MS/MS, (d) FT-ICR-ECD MS/MS and (e-g) TIMS-q-CID-ToF MS/MS platforms. (h) Bar
plots showing the relative intensities of the CID product ions per IMS bands for the selected [M + 2H]**

ions.
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Ion Mobility selected ~-ECD/CID MS/MS of Angiotensin I [M + 2H]**

Typical ion mobility, precursor ion mass and relative intensity of observed ECD fragments in TIMS-q-
EMS-ToF MS/MS and FT-ICR-ECD MS/MS of the [M + 2H]** angiotensin I molecular ion are shown in
Figure S4. The TIMS analysis for the [M + 2H]** molecular species of angiotensin I resulted in the
observation of three IMS bands, separated with an apparent ion mobility R ~ 145 using a Sr = 0.26 V/ms
(Figure S4a). Inspection of the ion mobility-selected ECD/CID spectra showed similar features between
the IMS 1, IMS 2 and IMS 3 bands as well as the FT-ICR ECD MS/MS spectra (Figure Ss). The charge-
reduced [M + 2H]™* ions (m/z 1297.7) were always observed with the largest abundance, as signature ions of
the ECD events. In addition, ¢;/z; series were observed, consisting of ¢, to ¢," and z; to z,” product ions
(except for c¢s and z; due to Pro7, Figure S4c). In the TIMS-q-EMS-ToF MS/MS experiments, a
fragmentation efficiency of ~ 0.5% relative to the intensity of the precursor ions was observed for the most
abundant ¢, ECD product ions. The total ECD fragmentation efficiency obtained in the TIMS-q-EMS-ToF
MS/MS platform matches that of the FT-ICR ECD MS/MS (~ 4.7% vs. ~ 3.6%, respectively, Table Sz).
Analogous to the case of substance P, ECD experiments of angiotensin I displayed higher extents of
hydrogen migration (He transfer) in the FT-ICR ECD MS/MS when compared to the TIMS-q-EMS-ToF
MS/MS platform (Figure S4d). For example, significant H* migration was observed at Val3, Tyr4 and Iles
residues, including c5, ¢;” and ¢s as well as z, and zs fragment ions. These results suggest that the bulky
Tyr4 residue of angiotensin I provides sufficient steric hindrance to be in proximity of the nearby residues,
facilitating He transfer in this region.

The ion mobility-selected ECD/CID fragmentation patterns (i.e., ci/z; and bi/y; series) of angiotensin I
were similar for the three IMS bands, suggesting that these IMS bands correspond to conformers that
follow the same protonation scheme. The presence of ¢, to ¢s fragments for all IMS bands is consistent
with Arg2 as potential protonated residue, while z; with y, to y, product ions point towards the
protonation of the Hisg residue. Moreover, differences in the relative abundance and hydrogen exchange
were observed across the ion mobility selected EMS spectra. One of the main differences was located at
the Iles residue, for which the higher relative abundance of the b; product ions was observed for IMS 3
while decreasing toward the IMS band 1 (green bars in Figure Ssh). This suggests that the Iles residue is
likely more exposed and more easily accessible to cleavage when the structure is more extended. Likewise,
c; fragments were found having higher relative abundances for IMS 1 and IMS 2 bands relative to IMS 3
band (blue bars), suggesting that Val3 residue is more exposed when the structure is compact. This
analysis is consistent with the higher H* transfer in the IMS 3 band (Figure S4d) related to Val3 residue
proximity to the Tyr4 sidechain, making the Val3-Tyr4 peptide bonds harder to cleave. Another difference
was observed at the Pro7-Phe8 peptide bond, where differences in the H* migration event were observed.
The z; product ions exhibited higher abundance of hydrogen migration for the IMS 3 band, indicating of
Pro7 residue proximity to the Phe8 sidechain. In addition, lower abundance of bs fragments in IMS band 3
as compared to IMS bands 1 and 2, suggested that the His6-Pro7 peptide bond in the IMS 3 band is
probably in a cis-configuration. The bs feature was also consistent with the ion mobility-selected CID
experiments (Figure Ssh). The lower abundance of z; product ions combined with the higher abundances
of bs fragments suggested that the His6-Pro7 peptide bond is probably in a trans-configuration in the IMS
1 and IMS 2 bands. The cs/bs product ions were found in lower relative abundance in the IMS 3 band
probably due to a cis configuration of the Pro7 residue that makes the cleavage between Phe8 and Hisg
residues less accessible.
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Angiotensin I: [M+2H]**
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Figure S4. TIMS-q-EMS-ToF and FT-ICR-ECD MS/MS analysis of angiotensin I [M + 2H]** ions (m/z
648.9). (a) Typical TIMS profiles, (b) quadrupole isolation window of the precursor ion, (c) bar plots
showing the relative intensities of the ECD product ions per IMS bands for the selected [M + 2H]** ions,
and (d) bar plot showing the hydrogen migration events of angiotensin I observed in the two MS
platforms, obtained by comparison between the experimental and theoretical isotopic patterns. Note that
relative intensities were calculated using peak heights and divided by the sum of all fragments for direct
comparison across IMS bands. ci/z; and bi/y; ions are plotted above and below the horizontal axis,
respectively in (c). Error bars from triplicate measurements are represented on the bar plots. lon mobility
selected ECD/CID and FT-ICR ECD spectra are shown in Figure Ss).
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Angiotensin I: [M+2H]*
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Figure S5. ECD/CID spectra of the ion mobility-selected [M + 2H]** ions of angiotensin I acquired in (a-c)
TIMS-q-ECD-ToF MS/MS, (d) FT-ICR-ECD MS/MS and (e-g) TIMS-q-CID-ToF MS/MS platforms. (h) Bar
plots showing the relative intensities of the CID product ions per IMS bands for the selected [M + 2H]**
ions.
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Ion Mobility selected -ECD/CID MS/MS of Bradykinin I [M + 2H]**

Typical ion mobility, precursor ion mass and relative intensity of observed ECD fragments in TIMS-q-
EMS-ToF MS/MS and FT-ICR-ECD MS/MS of the [M + 2H]** bradykinin molecular ion are shown in
Figure S6. The TIMS analysis for the [M + 2H]** molecular species of bradykinin resulted in the
observation of three resolved IMS bands, separated with an apparent ion mobility R ~ 120 using a Sr = 0.26
V/ms (Figure S6a). Inspection of the ion mobility-selected ECD/CID spectra showed similar features
between the IMS 1, IMS 2 and IMS 3 bands as well as the FT-ICR ECD MS/MS spectra (Figures S7). The
charge-reduced [M + 2H]™* ions (m/z 1060.6) were always observed, as signature ions of the ECD events. In
addition, ¢;/z; series were observed, consisting of ¢; to cs’and z,’ to zs product ions (except for ¢ and z;
due to Pro7y, Figure S6c¢). In the TIMS-q-EMS-ToF MS/MS experiments, a fragmentation efficiency of ~1.3%
relative to the intensity of the precursor ions was observed for the most abundant ¢;' ECD product ions.
The total ECD fragmentation efficiency obtained in the TIMS-q-EMS-ToF MS/MS platform matches that
of the FT-ICR ECD MS/MS (~ 4.8% vs. ~ 4.4%, respectively, Table S2). Hydrogen migration (H+ transfer)
events were found more pronounced for the FT-ICR ECD MS/MS when comparing with those obtained in
the EMS cell (Figure S6d). Product ions that involve significant H* migration were observed at Pro3, Gly4
and Phes residues, including c;, ¢, and ¢s as well as z,, z; and z¢ fragment ions. This suggests that a rigid
fold may occur in the bradykinin structure induced by the two proline residues (Proz and Pro3). This fold
may bring the nearby residues in proximity from the bulky side-chain of the Phes residue, facilitating the
He transfer.

The ion mobility-selected ECD/CID fragmentation patterns (i.e., ¢;/zj and bi/y; series) of bradykinin were
similar for the three IMS bands (Figures S6¢ and S7h), suggesting that these IMS bands correspond to
conformers that follow the same protonation scheme, in good agreement with previous reports from
Clemmer and co-workers.! In fact, the presence of ¢; to ¢s fragments for all IMS selected ECD spectra
suggests that the Argi residue is probably protonated, while z," product ions is consistent with Argg as
potential protonated residue. No significant differences in the relative abundance and hydrogen exchange
of product ions were observed across the IMS selected ECD/CID spectra in the Ser6-Argg region (Figures
S6c and S7h). This is consistent with previous observations, for which the well-defined B-turn motif of this
region is conserved, while the Argi-Phes residues lead to distinct populations, including cis/trans-
isomerization at Pro residues.”> Moreover, the absence of significant H+ transfer in the Ser6-Argg region
suggests that the Pro7 residue is in a trans-configuration for all IMS bands.

Differences were observed across the IMS selected spectra in the Argi-Phes region, for which the z¢
product ions exhibited significantly higher hydrogen exchange for the IMS 3 band (red bars in Figure S6d).
This suggests that the Pro3 residue is probably in proximity of the Proz residue as well as the bulky Phe6
residue, indicating that the Pro2 and Pro3 residues might be in a cis-configuration for the IMS 3 band only.
This feature is also consistent with the slightly lower relative intensity of the y, and ys product ions,
corresponding to the Proz-Pro3 and Argi-Proz peptide bonds, respectively (purple bars in Figures S6¢ and
S7h). In addition, the IMS 1 selected ECD spectra displayed higher zs fragments as compared to IMS 2 but
lower than IMS 1, suggesting that the Pro3 residue is either in proximity to the Pro2 residue or the bulky
Phe6 residue. This means that one of the Proz and Pro3 residues is probably in a cis-configuration for the
IMS 1 band. Moreover, lower H* transfer was observed at Pro3 residue for the IMS 2 selected ECD spectra,
suggesting that Pro3 residue interacts with a lesser extent with the Proz and Phes side-chains (as
compared to IMS 1 and 3 bands) consistent with the Proz and Pro3 residues in a trans-configuration. In
summary, the ion mobility-selected ECD fragmentation experiments suggest that the IMS 1-3 bands
correspond to trans-Pro2/cis-Pro3/trans-Pro7 and/or cis-Pro2/trans-Pro3/trans-Pro7, trans-Proz/trans-
Pro3/trans-Pro7 and cis-Pro2/cis-Pro3/trans-Pro7, respectively.
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Bradykinin: [M+2H]*
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Figure S6. TIMS-q-EMS-ToF and FT-ICR-ECD MS/MS analysis of bradykinin [M + 2H]** ions (m/z 530.8).
(a) Typical TIMS profiles, (b) quadrupole isolation window of the precursor ion, (c) bar plots showing the
relative intensities of the ECD product ions per IMS bands for the selected [M + 2H]* ions, and (d) bar
plot showing the hydrogen migration events of bradykinin observed in the two MS platforms, obtained by
comparison between the experimental and theoretical isotopic patterns. Note that relative intensities were
calculated using peak heights and divided by the sum of all fragments for direct comparison across IMS
bands. ci/zj and bi/y; ions are plotted above and below the horizontal axis, respectively in (c). Error bars
from triplicate measurements are represented on the bar plots. Ion mobility selected ECD/CID and FT-ICR
ECD spectra are shown in Figure S7).
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Figure S7. ECD/CID spectra of the ion mobility-selected [M + 2H]** ions of bradykinin acquired in (a-c)
TIMS-q-ECD-ToF MS/MS, (d) FT-ICR-ECD MS/MS and (e-g) TIMS-q-CID-ToF MS/MS platforms. (h) Bar
plots showing the relative intensities of the CID product ions per IMS bands for the selected [M + 2H]**

ions.
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Figure S8. ECD spectra of the [M + 2H]*" ions of (a) substance P, (b) angiotensin I, (c¢) bradykinin and (d)

AT-Hook 3 when TIMS operations is off (left panel) and on (right panel).

S14



Table Sz. ECD efficiency yields (%) of the investigated peptides obtained in the TIMS-q-ECD-ToF MS per
ion mobility band and in the FT-ICR MS platforms. Note that the efficiency yields arise from the sum of
intensities (peak height) for all fragments observed in the ECD spectra.

Peptides IMS band 1 IMS band 2 IMS band 3 FT-ICR

Substance P 10.3 £ 0.1 5.8+ 0.1 - 6.9+0.1

Angiotensin | 5.9 £ 0.1 4.2+0.1 4.1+ 0.05 3.6 £ 0.1

Bradykinin 6.6 £0.2 4.8+0a1 3.0 £ 0.05 4.4 %01

AT-Hook 3 7.0+ 0.3 4.6 £ 0.3 3.2 + 0.42 18.9 £ 0.7
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