1	Development of magnetic solid phase extraction based on magnetic chitosan-graphene oxide
2	nanoparticles and deep eutectic solvents for the determination of flavonoids by high
3	performance liquid chromatography
4	Zahra Jafari, Mohammad Reza Hadjmohammadi*
5	Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran,
6	NirooHavayiiboulevard,47416-95447 Babolsar, Iran
7	
8	
9	
10	
11	
12	
13	*Corresponding author: Prof. M.R. Hadjmohammadi, Department of Analytical Chemistry,
14	Faculty of Chemistry, University of Mazandaran, NirooHavayiiboulevard,47416-95447
15	Babolsar, Iran
16	Tel.: +98 113532350; fax: +98 1135342350.
17	E-mail address: hadjmr@umz.ac.ir (M.R. Hadjmohammadi)
18	
19	
20	

21 Synthesis of GO

Concentrated H₂SO₄ (23 mL) was affixed to a mix of graphite powder (1.0 g) and NaNO₃ (0.5 g) 22 in an ice bath and stirred. Then KmnO₄ (3.0 g) was added gradually to this mix for 20 min. After 23 5 h, the mix was removed from the ice-bath and extra 3 g of potassium permanganate was affixed 24 to the mix. After 12 h, 140 mL of water was poured into the mix. Then,1 mL of H₂O₂ (30% v/v)) 25 was added dropwise to the mixture subsequently until the color of the mixture changed from 26 brownish into bright yellow. The mix was centrifuged. The obtained results were then washed with 27 30% HCl and water until the pH reached to neutral. The finally obtained product was vacuum-28 dried at 50 °C. 29

30 Calculation of analytical parameters

31 Herein, to achieve the optimized efficiency of the MSPE method, extraction recovery (ER),
32 enrichment factor (EF), and spiking recovery (SR) was employed to investigate the extraction
33 efficiency under optimized conditions.

34 EF is defined as follows:

$$\% EF = \left(\frac{C_f}{C_i}\right) \times 100$$

36 That C_f and C_i are the concentrations of flavonoids in the desorption phase and the initial
37 concentration in the aqueous phase, respectively.

38 The extraction recovery of flavonoids is calculated as follows:

$$ER\% = \frac{n_a}{n_d} \times 100 = \frac{C_a V_a}{C_d V_d} \times 100 = EF \times \frac{V_a}{V_d} \times 100$$

40 where n_a the number of moles of analytes in the desorption phase and n_d number of moles of 41 analytes in the sample solution. Also, V_a and V_d are the volumes of desorption solvent and sample 42 solution, respectively.

43 The spiking recovery (SR) was applied in the analysis of real samples and is defined by the44 following equation:

Spiking recovery (%) =
$$\frac{C_{found} - C_{real}}{C_{added}} \times 100$$

46 Here, C_{found} shows the concentrations of flavonoids after adding a specific amount of standard into 47 the real sample, C_{real} is the flavonoids initial concentration in the real samples, and C_{added} is the 48 concentration of the standard solution spiked into the real samples.

49 The ME% was investigated by the ratio of the slopes of the calibration curves in the desorption50 solvent to slopes of the calibration curves in the matrix and determined as:

$$ME\% = \frac{(slope in matrix) - (slope in desorption solvent)}{(slope in desorption solvent)} \times 100$$
52
53
54
55
56
57

58	Figure S1. FT-IR spectra of the prepared DES, aloe vera gel, choline chloride, urea.
59	Figure S2. Pareto chart of the standardized effects obtained from a Plackett-Burman design.
60	Figure S3. Compare the desorption efficiency of DES with the conventional eluents such as
61	methanol, acetonitrile, ethanol and isopropanol.
62	Figure S4. Extraction efficiency of target analytes obtained by the GO, Fe ₃ O ₄ -GO and Fe ₃ O ₄ -CS-
63	GO
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74 75	
75	
77	
78	
79	
80	
81	
82	
83	

87 Table1S. The experimental variable and levels of the Plackett-Burman design88

88 89	Variables	Symbols	Low(-1)	High(1)
90				
91	Sorbent amount	А	5	15
92	Extraction time (min)	В	2	15
93	Desorbtion time (min)	С	2	10
94	pН	D	3	7
95	elution solvent volume (μL)	Е	100	500
96	Amount of salt 20 W/V%	F	0	20
97				
98				
99				
100				
101				
102				
103				
104				
105				
106				
107				
108				
109				
110				
111				
112				
113				
114				

1	1	5

117 Table S2. Analysis of variance table (ANOVA) of Plackett-Burman design

Source	df ^a	Sum of Squares	Mean Square	F-Ratio	P-Value
sorbent amount	1	1655645684	1655645684	29.88	0.003
extraction time	1	761183194	761183194	13.74	0.014
Desorb time	1	12724621	12724621	0.23	0.652
pН	1	118308920	118308920	2.14	0.204
solvent volume	1	3399357070	3399357070	61.36	0.001
Salt effect	1	713313780	713313780	12.87	0.016
Error	5	277022368	55404474		
Total	11	6937555637			
^a degree of freedom					
)					
)					
l					
2					
3					
1					
5					
5					
7					
3					
)					
)					
l					
2					
3					
1					
5					

137		Extractio	n param	neters		response surface
138	Numbers	A	В	С	D	
139	1	0	-1	0	1	153995
140	2	0	1	0	-1	150100
141	3	1	0	1	0	160347
142	4	0	0	0	0	143579
143	5	-1	0	-1	0	153745
144	6	-1	1	0	0	156817
145	7	0	0	-1	-1	141956
146	8	0	0	0	0	150135
147	9	0	1	-1	0	150566
148	10	0	0	-1	1	151011
149	11	1	0	0	-1	146446
150	12	0	-1	-1	0	152644
151	13	0	0	0	0	145728
152	14	-1	-1	0	0	161210
153	15	1	1	0	0	167071
154	16	-1	0	1	0	158617
155	17	0	1	1	0	168390
156	18	-1	0	0	1	159501
157	19	1	-1	0	0	145975
158	20	-1	0	0	-1	151528
159	21	0	-1	0	-1	153825
160	22	0	0	1	-1	152871
161	23	1	0	0	1	157687
162	24	1	0	-1	0	146011
163	25	0	-1	1	0	160108
164	26	0	0	1	1	164043
165	27	0	1	0	1	163904

136 Table S3. The experimental design matrix and response of the Box-Bahnken design

167 Table S4. Analysis of Variance (ANOVA) table of Box –Behnken design

168	Source	DF	Sum of Squares	Mean Square	F-Value	P-Value
169	A	1	33915856	33915856	14.35	0.002
170	В	1	59857800	59857800	25.32	0.000
171	С	1	390336133	390336133	165.11	0.000
172	D	1	237763519	237763519	100.57	0.000
173	AA	1	151360195	151360195	64.02	0.000
174	BB	1	323080978	323080978	136.66	0.000
175	CC	1	106102409	106102409	44.88	0.000
176	DD	1	41208249	41208249	17.43	0.001
177	AB	1	192918210	192918210	81.60	0.000
178	AC	1	22406022	22406022	9.48	0.008
179	AD	1	26832400	26832400	11.35	0.005
180	BD	1	46471489	46471489	19.66	0.001
181	Error	14	33097994	2364142		
182	Lack-of-Fit	12	28515852	2376321	1.04	0.591
183	Pure Error	2	4582142	2291071		
184	Total	26	1424041226			
185						
186						
187						
188						
189						

191 Table S5. Estimated determination coefficient of the BBD design

R ²		R ² (pred)	R ² (adj)	
97.68%		89.41%	95.68%	
Table S6. Optimized v	value of the fac	ctors obtained from BBD d	esign (coded and ur Salt effect	-coded values).
	pn		San cheer	Solvent volum
Coded value	-1	+ 1	+1	1
un-coded values	3	15	20% (w/v)	500

216

Matrix effect Sample $100 \ \mu g \ L^{-1}$ Natural orange juice 96 onion juice 93 Commercial apple juice 96 Natural apple juice 94 90 Green tea 218 219 220 221 222

217 Table S7. Matrix effect (ME%) for real samples

