Supplementary material for

Deoxygenation switch embedded red-emitting fluorogenic light-up probe for detection of highly toxic free bilirubin in human blood serum

Ejaj Ahmmed^a, Asit Mondal^a, Nimai Chandra Saha^b, Koushik Dhara^c, Pabitra Chattopadhyay^{a,*}

^a Department of Chemistry, The University of Burdwan, Burdwan-713104, West Bengal, India

^bVice Chancellor's Research Group, The University of Burdwan, Burdwan, West Bengal, 713104, India

^c Department of Chemistry, Sambhu Nath College, Labpur, Birbhum 731303, West Bengal, India **Corresponding author**

Pabitra Chattopadhyay - Department of Chemistry, The University of Burdwan, Burdwan 713 104, West Bengal, India, orcid.org/0000-0002-5923-7462; Email: pabitracc@yahoo.com, Fax: +91-342-2530452

Table of content:

Fig. S1.FT-IR spectrum of DEB

- Fig. S2.¹HNMR spectrum of DEB in d_6 -DMOS
- Fig. S3.¹³C NMR spectrum of DEB in d_6 -DMOS
- Fig. S4. High resolution mass spectrum of DEB
- Fig. S5.FT-IR spectrum of Ac-DEB
- Fig. S6.¹HNMR spectrum of Ac-DEB in CDCl₃
- Fig. S7.¹³C NMR spectrum of Ac-DEB in CDCl₃
- Fig. S8. High resolution mass spectrum of Ac-DEB
- Fig. S9.FT-IR spectrum of Ac-DEBNox in KBr plate
- Fig. S10.¹HNMR spectrum of Ac-DEBNox in CDCl₃
- Fig. S11.¹³C NMR spectrum of Ac-DEBNox ind₆-DMOS
- Fig. S12. High resolution mass spectrum of Ac-DEBNox
- Fig. S13.FT-IR spectrum of DEBNox
- Fig. S14.¹HNMR spectrum of DEBNox in CDCl₃
- Fig. S15.¹³CNMR spectrum of DEBNox in d_6 -DMOS
- Fig. S16. High resolution mass spectrum of DEBNox
- Fig. S17. Naked eye color change of DEBNox towards bilirubin
- Fig. S18. The fluorescence enhancing behavior of DEBNoxtowards bilirubin
- Fig. S19.Paper-strip test of DEBNoxusing bilirubin
- Fig. S20. Fluorescence intensity (at 623 nm) vs bilirubin concentration plot
- Table S1.Free bilirubin determination in different human blood serum specimens
- Table S2. Comparative study with various reported fluorogenic probes for bilirubin detection

Fig. S1.FT-IR spectrum of DEB.

Fig. S2.¹HNMR spectrum of DEBind₆-DMSO.

Fig. S3.¹³C NMR spectrum of DEB in d_6 -DMSO.

Fig. S4. High resolution mass spectrum of DEB.

Fig. S5.FT-IR spectrum of Ac-DEB.

Fig. S6.¹HNMR spectrum of Ac-DEBinCDCl₃.

Fig. S7.¹³C NMR spectrum of Ac-DEB in CDCl₃.

Fig. S8. High resolution mass spectrum of Ac-DEB.

Fig. S9. FT-IR spectrum of Ac-DEBNox.

Fig. S10.¹H NMR spectrum of Ac-DEBNox in CDCl₃.

Fig. S11.¹³C NMR spectrum of Ac-DEBNox in d_6 -DMSO.

Fig. S12. High resolution mass spectrum of Ac-DEBNox.

Fig. S13. FT-IR spectrum of DEBNox.

Fig. S14.¹HNMR spectrum of DEBNox inCDCl₃

Fig. S15.¹³CNMR spectrum of DEBNox in d_6 -DMSO.

Fig. S16. High resolution mass spectrum of DEBNox.

Fig. S17. Naked eye color change of DEBNox (10 μ M) towards increasing concentration of bilirubin in reaction buffer (50 mM HEPES, 5% DMSO, pH 7.4) at 27 °C in presence of 100 μ M Fe³⁺.

Fig. S18. The fluorescence enhancement behavior of DEBNox (10 μ M) towards the increasing concentration of bilirubin (0 - 10 μ M) in reaction buffer (50 mM HEPES, 5% DMSO, pH- 7.4) at 27 °C in presence of 100 μ M Fe³⁺.

.

Fig. S19. (a) Paper-strip test with 20 μ M DEBNox and 100 μ M Fe³⁺ with different concentrations of bilirubin: (i) DEBNox, (ii) DEBNox + 100 μ M Fe³⁺, (iii) DEBNox + Fe³⁺ + 2.5 μ M bilirubin, (iv) DEBNox + Fe³⁺ + 5 μ M bilirubin, (v) DEBNox + Fe³⁺ + 7.5 μ M bilirubin, (vi) DEBNox + Fe³⁺ + 10 μ M bilirubin. (b) different human blood serum sample with high bilirubin concentration (images were taken under UV lamp).

Fig. S20. Fluorescence intensity of DEBNox (10 μ M) at 623 nm vs bilirubin (0 μ M to 10 μ M) concentration in the reaction buffer (50 mM HEPES, 5% DMSO, pH 7.4) using 100 μ M Fe³⁺ (ex: 580 nm).

Table S1. (a) Determination of free bilirubin in different human blood serum specimens using DEBNox incubated at 27 °C for 1 hr. and existing colorimetric diazo-method.

Serum specimen	Free bilirubin estimated using	Free bilirubin estimated using			
	DEBNox (mg/dl)	existing colorimetric diazo-method			
		(mg/dl)			
Sample-01	0.64	0.74			
Sample-02	0.60	0.71			
Sample-03	0.72	0.81			
Sample-04	0.99	1.10			
Sample-05	1.20	1.32			

^aAverage of three replicate experiments UNIT CONVERSION: mg/dl x $16.95 = \mu mol/l$

(b)Recovery of free bilirubin by adding standard amount of 10 μ M bilirubin to different human blood serum specimens using two methods.

Serum	Free bilirubin estimated using		Free bilirubin estimated using		
specimen	DEBNox (mg/dl)		existing colorimetric diazo-method		
			(mg/dl)		
	Total bilirubin	Recovery (%)	Total bilirubin	Recovery (%)	
	after addition ^a		after addition ^a		
Sample-01	1.18 ± 0.03	96.11	1.54 ± 0.04	115.88	
Sample-02	1.14 ± 0.04	96.23	1.51 ± 0.04	116.02	
Sample-03	1.26 ± 0.03	95.99	1.63 ± 0.03	116.18	
Sample-04	1.52 ± 0.02	96.30	1.88 ± 0.03	111.21	
Sample-05	1.74 ± 0.04	97.13	2.11 ± 0.03	110.53	

Sl. No.	Method of detection	Principle	LOD	Wavelength (λex/λem) in nm	References in main manuscript
1	Fluorimetry (turn off)	MOF (UIO-66-PSM) Quenching	0.59 μΜ	340/470	[22]
2	Fluorimetry (turn off)	Polyfluorenes, polymer Quenching	0.15 μΜ	325/~450	[23]
3	Fluorimetry (turn off)	Gold nanoclusters Quenching	248 nM	295/380	[24]
4	Fluorimetry (turn off)	MOF(1-NH2@THB) Quenching	1.26 pM	325/425	[25]
5	Fluorimetry (turn off)	MoS2 quantumdots Quenching	2.10 nM	310/392	[26]
6	Fluorimetry (turn off)	Nanosheets Quenching	41.0 nM	274,356,367/ 550-570	[27]
7	Fluorimetry (turn off)	Gold Nanoclusters Quenching	0.61 μM	487/597	[28]
8	Fluorimetry (turn off)	MOFs, Zr(IV)-Based Quenching	0.45 μΜ	254,320/614	[29]
9	Fluorimetry (turn off)	Quantum Dots Quenching	1.8 0 µM	325/ 410,470,590	[30]
10	Fluorimetry (on- off-on)	Gold Nanoclusters (2fold)	3.42 μM	~350 /~570	[31]
11	Fluorimetry (on- off-on)	S,N-doped carbon dots (3fold)	0.12 nM	375/452	[32]
12	Fluorimetry (on- off-on)	Copper Nanocluster (2fold)	6.62 nM	320/405	[33]
13	Fluorimetry (turn on)	Coumarin-fluorophores (12 Fold)	76.0 nM	400/515	Our previous work [34]
14	Fluorimetry (turn on)	Benzorhdolfluorophores (20 Fold)	33.0 nM	580 /623	Present work

Table S2. Comparative study of fluorescence probe for the detection of bilirubin with their sensing mechanism, method, excitation wavelength and LOD.