Supporting Information

A quinoline-benzothiazole based chemosensor coupled with smart phone for rapid detection of In³⁺

Leyana K. Shaji and S.K. Ashok Kumar*

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore – 632 014, Tamil Nadu, India. Email: <u>ashokkumar.sk@vit.ac.in</u>

Fig. 1S. FT-IR spectrum of L

Fig. 2S. ¹H NMR spectrum of L

Fig. 4S. HR-MS spectrum of L

Fig. 5S. ESI-MS spectrum of L+In³⁺

Fig. 6S. Bar diagrams depicting the effect of various interfering anions analytes

Fig. 7S. Stability Test of L performed by UV-vis spectral response for seven days

Structure of the probe	Method	LOD	Medium	Additional species detected	Application
[41]	Ratiometric fluorescent	2.68 µM	Near aqueous	-	Real sample analysis and live cell imaging
	fluorimetric	29 nM	DMF/H ₂ O (9:1)	Zn ²⁺ & Ppi in ACN Fluorimetric	Real sample analysis
	fluorimetric	9.62 μM	aqueous	-	Real sample analysis
	fluorimetric	1.02 nM	DMF/H ₂ O (9:1)	Zn ²⁺ (EtOH:H ₂ O) Fluorimetric	Real sample analysis
	fluorimetric	5.89 µM	CH₃CN	Fe ³⁺ (colorimetric)	NA
	fluorimetric	0.05 μΜ	MeOH/H ₂ O (1:1)	Zn ²⁺ , ClO ⁻ (fluorimetric) (colorimetric)	Real sample analysis
	fluorimetric	0.53 μΜ	DMF	Fe ³⁺ (colorimetric)	NA
	fluorimetric	0.04 µM	DMF/H ₂ O (9:1)	Ppi (secondary sensor)	Real sample analysis
	fluorimetric	7.92 μM	МеОН	Ga ³⁺ , Al ³⁺ (fluorimetric)	NA
Present Work	colorimetric	0.2 μΜ	DMSO	Nil	Test strip

Table 1S. Comparison of present probe with previously reported probes for In³⁺ ions recognition

Code	Abs (nm)	Mol. Abs (L m ⁻¹ cm ⁻¹)	Wavelength max(nm)	Oscillator strength (f)	Transition	Orbital Contribution
L	360	13500	372.28	0.3957	$S_0 \rightarrow S_2$	H-1→L 86%, H→L 10%
L-In ³⁺	450	9200	480.26	0.239	$S_0 \rightarrow S_3$	H-1→L 50%, H→L+1 48%

 Table 2S. Comparison of experimental and theoretical excitation spectral studies.

*H-HOMO, L-LUMO orbitals
