A simple sensing platform based on 1T@2H-MoS<sub>2</sub>/cMWCNTs composite modified electrode for ultrasensitive detection of the illegal Sudan I dye in food samples

Qiaoling Wu,<sup>ab</sup> Chun Ji,<sup>c</sup> Lingli Zhang,<sup>ab</sup> Qingli Shi,<sup>ab</sup> Yuangen Wu,<sup>ab</sup> Han Tao<sup>\*ab</sup>

<sup>a</sup>. School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.

<sup>b</sup>.Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China.

<sup>c</sup>. School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.

<sup>\*</sup> Corresponding: Han Tao, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.

E-mail address: taohanedu@126.com



Fig. S1 Nyquist plots obtained at bare GCE (curve blue),  $1T@2H-MoS_2/cMWCNTs/GCE$ (curve red) and  $2H-MoS_2/GCE$  (curve black) in 0.1 M KCl solution containing 5 mM [Fe(CN)<sub>6</sub>]<sup>3-/4-</sup>. Frequency range: 0.01 Hz ~ 10 kHz, amplitude: 5 mV.



Fig. S2 SWV curves of  $1T@2H-MoS_2/cMWCNTs/GCE$  to 50 µM Sudan I in different supporting electrolyte solution (pH 7.0, 0.1 M). enrichment time: 120 s, potential window: 0.2 V~1.0 V.



Fig. S3 (a) Effect of  $1T@2H-MoS_2/cMWCNTs$  loading volume on peak current of Sudan I (50  $\mu$ M), (b) Effect of accumulation time on peak current of Sudan I (50  $\mu$ M). Supporting electrolyte solution: 0.1 M PBS (pH 7.5), Other conditions are the same as in Fig. S2.



Fig. S4 Storage stability of 1T@2H-MoS<sub>2</sub>/cMWCNTs/GCE. The experimental conditions are the same as in Fig. 8.