Supporting information for

Ultrasound assisted switchable hydrophilic solvent based homogeneous liquidliquid microextraction for determination of triazole fungicides in environmental water by GC-MS

Huihao Lv^a, Xiangzi Jin^a, Zhihui Zhang^a, Yao Chen^a, Guohua Zhu^b, *, Zuguang Li^a,*, Mawrong Lee^c

a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

- b Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- c Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
- * Corresponding author : College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014,

China E-mail address: lzg@zjut.edu.cn; wally5258@163.com

Fig. S1 Effect of SHS type on the extraction of 3 TFs. TEA on the left and DMCHA on the right. Extraction conditions: extraction solvent volume, 400 μ L; ultrasonic time, 30 s; NaOH volume, 2 mL; NaCl, 0 g.

Fig. S2 Effect of auxiliary type on the extraction of 3 TFs. Extraction conditions: extraction solvent (Protonated DMCHA) volume, 400 μ L; auxiliary time, 30 s; NaOH volume, 2 mL; NaCl, 0 g.

Fig. S3 Effect of Ionic Strength on the extraction of 3 TFs. Extraction conditions: extraction solvent (Protonated DMCHA) volume, 400 μ L; ultrasonic time, 30 s; NaOH volume, 2 mL.

Fig. S4 Total ionic chromatograms of (a) an unspiked water sample; (b) water samples spiked with $10 \ \mu g \cdot L^{-1}$ of each analyte; (c) $50 \ \mu g \cdot L^{-1}$ of each analyte; (d) $100 \ \mu g \cdot L^{-1}$ of each analyte. (1: Myclobutanil, 2: Tebuconazole, 3: Epoxiconazole)

Name	Low (-1)		High (+1)	
A: SHS(µL)	400		500	
B: NaOH (mL)	1.5		2.5	
C: Ultrasonic time (s)	15		45	
No.	A:SHS (µL)	B: NaOH (mL) c	C: ultrasonic time (s)	
1	450	2	30	
2	500	2	15	
3	450	2	30	
4	450	2.5	45	
5	400	2.5	30	
6	450	2	30	
7	400	1.5	30	
8	450	2	30	
9	400	2	15	
10	500	2	45	
11	500	2.5	30	
12	500	1.5	30	
13	450	1.5	15	
14	450	2	30	
15	450	1.5	45	
16	450	2.5	15	
17	400	2	45	

Table S1 The details of the Box–Behnken design

Table S2 Calibration curves of three triazoles (n=3)

Analytes	Equation	linear range (mg·L ⁻¹)	R ²	
Myclobutanil	Y=23664x-4091.6	1-10	0.9997	
Tebuconazole	Y=6069.9x-2297	1-10	0.9997	
Epoxiconazole	Y=9155x-3318	1-10	0.9992	

Analytes	Spiked				
	concentration	Recoveries, %		0	RSD, %
	/µg·L⁻¹₁				
Myclobutanil	10	97.2	103.1	97.2	3.43
	50	105.9	105.4	95.7	5.62
	100	90.5	105.1	90.1	9.01
Tebuconazole	10	94.8	97.5	99.1	2.19
	50	90.1	91.7	94.5	2.42
	100	83.8	94.1	89.6	5.74
Epoxiconazole	10	91.4	111.1	108.7	10.36
	50	86.2	107.1	81.3	14.97
	100	98.5	107.2	90.4	8.51

Table S3 Recoveries of three triazoles added in environmental water(n=3)